An analysis of gut microbial diversity of deltamethrin-susceptible strains and deltamethrin-resistant populations of Culex pipiens pallens
LIU Zhi-han1,2, SUN Xiao-hong3, XING Yi-fan1,2, ZHOU Dan1,2, SUN Yan1,2, MA Lei1,2, SHEN Bo1,2
1 Department of Pathogen Biology, Nanjing Medical University, Nanjing 211166, Jiangsu Province, China; 2 Key Laboratory of Pathogen Biology(NJMU); 3 First Affiliated Hospital of Nanjing Medical University
Abstract:Objective To determine the gut microbial diversity and composition of deltamethrin-susceptible strains and deltamethrin-resistant populations of adult Culex pipiens pallens. Methods The guts of deltamethrin-susceptible strains and deltamethrin-resistant populations of adult Cx. pipiens pallens were isolated, and total genomic DNA was extracted. The V3+V4 region of the 16S rDNA gene from the gut microbiota of deltamethrin-susceptible strains and deltamethrin-resistant populations of adult mosquitoes was sequenced for analysis of their species composition, population diversity, and relative abundance. Quantitative real-time PCR (RT-qPCR) was used to verify the relative bacterial abundance and test the reliability of sequencing data. Results A total of 216 022 valid sequences were obtained by optimized clipping, and 766 operational taxonomic units were obtained by clustering analysis based on sequence similarity, annotated into 31 phyla, 62 classes, 132 orders, 215 families, and 339 genera. The coverage of all samples was close to 99%, which indicated that the sequencing scale was sufficient to cover almost all the bacterial species. The Chao1 index, Shannon index, and Simpson index were 374.53±40.27, 2.56±0.59, and 0.36±0.11, respectively, for deltamethrin-susceptible strains, and 201.58±29.34, 1.14±0.13, and 0.55±0.07, respectively, for deltamethrin-resistant strains. The dominant phyla of gut microbiota of deltamethrin-susceptible strains and deltamethrin-resistant populations were Proteobacteria and Firmicutes. At the taxonomic level of order, the dominant bacteria were Rhodospirillales, Enterobacterales, and Burkholderiales for deltamethrin-susceptible strains and Rhodospirillales, Aeromonadales, and Lactobacillales for deltamethrin-resistant populations. At the taxonomic level of genus, the dominant bacteria for deltamethrin-susceptible strains were an unidentified genus in Acetobacteraceae, followed by Asaia and Rhodococcus; the dominant bacteria for deltamethrin-resistant populations were Asaia (as an absolutely dominant genus), followed by an unidentified genus in Acetobacteraceae and Aeromonas. The reliability of sequencing data was verified by the RT-qPCR results of the randomly selected bacteria. Conclusion There are differences in gut microbial composition and diversity between deltamethrin-susceptible strains and deltamethrin-resistant populations of Cx. pipiens pallens. It indicates the vital role of gut microbiota of mosquitoes in the development of resistance to insecticides, which provides new perspective and clue for the comprehensive prevention and control of mosquito vectors.
刘芷涵, 孙小红, 邢一帆, 周丹, 孙艳, 马磊, 沈波. 淡色库蚊溴氰菊酯敏感品系与抗性种群的肠道菌群多样性分析[J]. 中国媒介生物学及控制杂志, 2020, 31(5): 545-551.
LIU Zhi-han, SUN Xiao-hong, XING Yi-fan, ZHOU Dan, SUN Yan, MA Lei, SHEN Bo. An analysis of gut microbial diversity of deltamethrin-susceptible strains and deltamethrin-resistant populations of Culex pipiens pallens. Chines Journal of Vector Biology and Control, 2020, 31(5): 545-551.
[1] Kawada H,Higa Y,Futami K,et al. Discovery of point mutations in the voltage-gated sodium channel from African Aedes aegypti populations:potential phylogenetic reasons for gene introgression[J]. PLoS Negl Trop Dis,2016,10(6):e0004780. DOI:10.1371/journal.pntd.0004780. [2] Grigoraki L,Lagnel J,Kioulos I,et al. Transcriptome profiling and genetic study reveal amplified carboxylesterase genes implicated in temephos resistance,in the Asian tiger mosquito Aedes albopictus[J]. PLoS Negl Trop Dis,2015,9(5):e0003771. DOI:10.1371/journal.pntd.0003771. [3] Leong CS,Vythilingam I,Liew JWK,et al. Enzymatic and molecular characterization of insecticide resistance mechanisms in field populations of Aedes aegypti from Selangor,Malaysia[J]. Parasit Vectors,2019,12(1):236. DOI:10.1186/s13071-019-3472-1. [4] Hemingway J,Hawkes NJ,McCarroll L,et al. The molecular basis of insecticide resistance in mosquitoes[J]. Insect Biochem Mol Biol,2004,34(7):653-665. DOI:10.1016/j.ibmb.2004.03.018. [5] Tabbabi A,Daaboub J,Cheikh RB,et al. Resistance status to deltamethrin pyrethroid of Culex pipiens pipiens (Diptera:Culicidae) collected from three districts of Tunisia[J]. Afr Health Sci,2018,18(4):1182-1188. DOI:10.4314/ahs.v18i4.39. [6] Pietri JE,Tiffany C,Liang DS. Disruption of the microbiota affects physiological and evolutionary aspects of insecticide resistance in the German cockroach,an important urban pest[J]. PLoS One,2018,13(12):e0207985. DOI:10.1371/journal.pone.0207985. [7] Cheng DF,Guo ZJ,Riegler M,et al. Gut symbiont enhances insecticide resistance in a significant pest,the oriental fruit fly Bactrocera dorsalis (Hendel)[J]. Microbiome,2017,5(1):13. DOI:10.1186/s40168-017-0236-z. [8] Ben-Yosef M,Pasternak Z,Jurkevitch E,et al. Symbiotic bacteria enable olive flies (Bactrocera oleae) to exploit intractable sources of nitrogen[J]. J Evol Biol,2014,27(12):2695-2705. DOI:10.1111/jeb.12527. [9] Dan H,Ikeda N,Fujikami M,et al. Behavior of bacteriome symbionts during transovarial transmission and development of the Asian citrus psyllid[J]. PLoS One,2017,12(12):e0189779. DOI:10.1371/journal.pone.0189779. [10] Beckmann JF,Ronau JA,Hochstrasser M. A Wolbachia deubiquitylating enzyme induces cytoplasmic incompatibility[J]. Nat Microbiol,2017,2(5):17007. DOI:10.1038/nmicrobiol. 2017.7. [11] Landmann F. The Wolbachia endosymbionts[J]. Microbiol Spectr,2019,7(2). DOI:10.1128/microbiolspec.BAI-0018-2019. [12] Ahn JH,Hong IP,Bok JI,et al. Pyrosequencing analysis of the bacterial communities in the guts of honey bees Apis cerana and Apis mellifera in Korea[J]. J Microbiol,2012,50(5):735-745. DOI:10.1007/s12275-012-2188-0. [13] Zhukova M,Sapountzis P,Schiott M,et al. Diversity and transmission of gut bacteria in Atta and Acromyrmex leaf-cutting ants during development[J]. Front Microbiol,2017,8:1942. DOI:10.3389/fmicb.2017.01942. [14] Douglas AE. Symbiotic microorganisms:untapped resources for insect pest control[J]. Trends Biotechnol,2007,25(8):338-342. DOI:10.1016/j.tibtech.2007.06.003. [15] Narasimhan S,Fikrig E. Tick microbiome:the force within[J]. Trends Parasitol,2015,31(7):315-323. DOI:10.1016/j.pt. 2015.03.010. [16] Meriweather M,Matthews S,Rio R,et al. A 454 survey reveals the community composition and core microbiome of the common bed bug (Cimex lectularius) across an urban landscape[J]. PLoS One,2013,8(4):e61465. DOI:10.1371/journal.pone. 0061465. [17] Broderick NA,Lemaitre B. Gut-associated microbes of Drosophila melanogaster[J]. Gut Microbes,2012,3(4):307-321. DOI:10.4161/gmic.19896. [18] Xia XF,Zheng DD,Zhong HZ,et al. DNA sequencing reveals the midgut microbiota of diamondback moth,Plutella xylostella (L.) and a possible relationship with insecticide resistance[J]. PLoS One,2013,8(7):e68852. DOI:10.1371/journal.pone. 0068852. [19] Kwon GS,Sohn HY,Shin KS,et al. Biodegradation of the organochlorine insecticide,endosulfan,and the toxic metabolite,endosulfan sulfate,by Klebsiella oxytoca KE-8[J]. Appl Microbiol Biotechnol,2005,67(6):845-850. DOI:10.1007/s00253-004-1879-9. [20] Douglas AE. The B vitamin nutrition of insects:the contributions of diet,microbiome and horizontally acquired genes[J]. Curr Opin Insect Sci,2017,23:65-69. DOI:10.1016/j.cois.2017.07.012. [21] Crotti E,Damiani C,Pajoro M,et al. Asaia,a versatile acetic acid bacterial symbiont,capable of cross-colonizing insects of phylogenetically distant genera and orders[J]. Environ Microbiol,2009,11(12):3252-3264. DOI:10.1111/j.1462-2920.2009.02048.x. [22] Good AP,Gauthier MPL,Vannette RL,et al. Honey bees avoid nectar colonized by three bacterial species,but not by a yeast species,isolated from the bee gut[J]. PLoS One,2014,9(1):e86494. DOI:10.1371/journal.pone.0086494. [23] Robinson CJ,Schloss P,Ramos Y,et al. Robustness of the bacterial community in the cabbage white butterfly larval midgut[J]. Microb Ecol,2010,59(2):199-211. DOI:10.1007/s00248-009-9595-8. [24] Gonella E,Crotti E,Rizzi A,et al. Horizontal transmission of the symbiotic bacterium Asaia sp. in the leafhopper Scaphoideus titanus ball (Hemiptera:Cicadellidae)[J]. BMC Microbiol,2012,12 Suppl 1:S4. DOI:10.1186/1471-2180-12-s1-s4. [25] Kikuchi Y,Hayatsu M,Hosokawa T,et al. Symbiont-mediated insecticide resistance[J]. Proc Natl Acad Sci USA,2012,109(22):8618-8622. DOI:10.1073/pnas.1200231109. [26] Zhang J,Pan YO,Zheng C,et al. Rapid evolution of symbiotic bacteria populations in spirotetramat-resistant Aphis gossypii glover revealed by pyrosequencing[J]. Comp Biochem Physiol Part D Genom Proteom,2016,20:151-158. DOI:10.1016/j.cbd.2016.10.001.