[1] World Health Organization. Launch of the global plan for insecticide resistance management in malaria vectors (GPIRM)[R]. Geneva:WHO,2012:1-16.
[2] Reid MC, McKenzie FE. The contribution of agricultural insecticide use to increasing insecticide resistance in African malaria vectors[J]. Malar J,2016,15(1):107.
[3] Zhu F, Lavine L, O'Neal S, et al. Insecticide resistance and management strategies in urban ecosystems[J]. Insects,2016,7(1):2.
[4] Johnson RM, Wen ZM, Schuler MA, et al. Mediation of pyrethroid insecticide toxicity to honey bees (Hymenoptera: Apidae) by cytochrome P450 monooxygenasea[J]. J Econ Entomol,2006,99(4):1046-1050.
[5] Brooke BD,Kloke G, Hunt RH, et al. Bioassay and biochemical analyses of insecticide resistance in southern African Anopheles funestus (Diptera: Culicidae)[J]. Bull Entomol Res,2001,91(4):265-272.
[6] Bergé JB, Feyereisen R, Amichot M. Cytochrome P450 monooxygenases and insecticide resistance in insects[J]. Philos Trans R Soc Lond B Biol Sci,1998,353(1376):1701-1705.
[7] Ibrahim SS, Riveron JM, Bibby J, et al. Allelic variation of cytochrome P450s drives resistance to bednet insecticides in a major malaria vector[J]. PLoS Genet,2015,11(10):e1005618.
[8] Müller P, Warr E, Stevenson BJ, et al. Field-caught permethrin-resistant Anopheles gambiae overexpress CYP6P3, a P450 that metabolises pyrethroids[J]. PLoS Genet,2008,4(11): e1000286.
[9] Mitchell SN, Stevenson BJ, Müller P, et al. Identification and validation of a gene causing cross-resistance between insecticide classes in Anopheles gambiae from Ghana[J]. Proc Natl Acad Sci USA,2012,109(16):6147-6152.
[10] Riveron JM, Ibrahim SS, Chanda E, et al. The highly polymorphic CYP6M7 cytochrome P450 gene partners with the directionally selected CYP6P9a and CYP6P9b genes to expand the pyrethroid resistance front in the malaria vector Anopheles funestus in Africa[J]. BMC Genomics,2014,15(1):817.
[11] Liu NN, Li T, Reid WR, et al. Multiple Cytochrome P450 genes: their constitutive overexpression and permethrin induction in insecticide resistant mosquitoes, Culex quinquefasciatus[J]. PLoS One,2011,6(8):e23403.
[12] Toé KH, N'Falé S, Dabiré RK, et al. The recent escalation in strength of pyrethroid resistance in Anopheles coluzzi in West Africa is linked to increased expression of multiple gene families[J]. BMC Genomics,2015,16(1):146.
[13] Stevenson BJ, Pignatelli P, Nikou D, et al. Pinpointing P450s associated with pyrethroid metabolism in the dengue vector, Aedes aegypti: developing new tools to combat insecticide resistance[J]. PLoS Negl Trop Dis,2012,6(3):e1595.
[14] Kasai S, Komagata O, Itokawa K, et al. Mechanisms of pyrethroid resistance in the dengue mosquito vector, Aedes aegypti: target site insensitivity, penetration, and metabolism[J]. PLoS Negl Trop Dis,2014,8(6):e2948.
[15] Riveron JM, Irving H, Ndula M, et al. Directionally selected cytochrome P450 alleles are driving the spread of pyrethroid resistance in the major malaria vector Anopheles funestus[J]. Proc Natl Acad Sci USA,2013,110(1):252-257.
[16] Itokawa K, Komagata O, Kasai S, et al. A single nucleotide change in a core promoter is involved in the progressive overexpression of the duplicated CYP9M10 haplotype lineage in Culex quinquefasciatus[J]. Insect Biochem Mol Biol,2015,66: 96-102.
[17] Bariami V, Jones CM, Poupardin R, et al. Gene amplification, ABC transporters and cytochrome P450s: unraveling the molecular basis of pyrethroid resistance in the dengue vector, Aedes aegypti[J]. PLoS Negl Trop Dis,2012,6(6):e1692.
[18] Zhou D, Liu XM, Sun Y, et al. Genomic analysis of detoxification supergene families in the mosquito Anopheles sinensis[J]. PLoS One,2015,10(11):e0143387.
[19] Riveron JM, Yunta C, Ibrahim SS, et al. A single mutation in the GSTe2 gene allows tracking of metabolically based insecticide resistance in a major malaria vector[J]. Genome Biol,2014,15(2):R27.
[20] Djègbè I,Agossa FR,Jones CM,et al. Molecular characterization of DDT resistance in Anopheles gambiae from Benin[J]. Parasit Vectors,2014,7:409.
[21] Jones CM, Toé HK, Sanou A, et al. Additional selection for insecticide resistance in urban malaria vectors: DDT resistance in Anopheles arabiensis from Bobo-Dioulasso, Burkina Faso[J]. PLoS One,2012,7(9):e45995.
[22] Yan LZ, Yang PC, Jiang F, et al. Transcriptomic and phylogenetic analysis of Culex pipiens quinquefasciatus for three detoxification gene families[J]. BMC Genomics,2012,13:609.
[23] Zhang HY, Meng FX, Qiao CL, et al. Identification of resistant carboxylesterase alleles in Culex pipiens complex via PCR-RFLP[J]. Parasit Vectors,2012,5:209.
[24] Cui F, Lin LY, Qiao CL, et al. Insecticide resistance in Chinese populations of the Culex pipiens complex through esterase overproduction[J]. Entomol Exp Appl,2006,120(3): 211-220.
[25] Faucon F, Dusfour I, Gaude T, et al. Identifying genomic changes associated with insecticide resistance in the dengue mosquito Aedes aegypti by deep targeted sequencing[J]. Genome Res,2015,25(9):1347-1359.
[26] Poupardin R, Srisukontarat W, Yunta C, et al. Identification of carboxylesterase genes implicated in temephos resistance in the dengue vector Aedes aegypti[J]. PLoS Negl Trop Dis,2014,8(3):e2743.
[27] Essandoh J, Yawson AE, Weetman D. Acetylcholinesterase (Ace-1) target site mutation 119S is strongly diagnostic of carbamate and organophosphate resistance in Anopheles gambiae s. s. and Anopheles coluzzii across southern Ghana[J]. Malar J, 2013,12:404.
[28] Djogbénou L, Chandre F, Berthomieu A, et al. Evidence of introgression of the ace-1R mutation and of the ace-1 duplication in West African Anopheles gambiae s. s. [J]. PLoS One,2008,3(5):e2172.
[29] Liebman KA, Pinto J, Valle J, et al. Novel mutations on the ace-1 gene of the malaria vector Anopheles albimanus provide evidence for balancing selection in an area of high insecticide resistance in Peru[J]. Malar J,2015,14:74.
[30] Zhao MH, Dong YD, Ran X, et al. Point mutations associated with organophosphate and carbamate resistance in Chinese strains of Culex pipiens quinquefasciatus (Diptera: Culicidae)[J]. PLoS One,2014,9(5):e95260.
[31] Tan J, Liu Z, Tsai TD, et al. Novel sodium channel gene mutations in Blattella germanica reduce the sensitivity of expressed channels to deltamethrin[J]. Insect Biochem Mol Biol,2002,32(4):445-454.
[32] Lee SH, Smith TJ, Knipple DC, et al. Mutations in the house fly Vssc1 sodium channel gene associated with super-kdr resistance abolish the pyrethroid sensitivity of Vssc1/tipE sodium channels expressed in Xenopus oocytes[J]. Insect Biochem Mol Biol,1999,29(2):185-194.
[33] Yoon KS, Kwon DH, Strycharz JP, et al. Biochemical and molecular analysis of deltamethrin resistance in the common bed bug (Hemiptera: Cimicidae)[J]. J Med Entomol, 2008, 45(6): 1092-1101.
[34] Singh OP, Dykes CL, Sharma G, et al. L1014F-kdr mutation in Indian Anopheles subpictus (Diptera: Culicidae) arising from two alternative transversions in the voltage-gated sodium channel and a single PIRA-PCR for their detection[J]. J Med Entomol, 2015,52(1):24-27.
[35] Asih PBS, Syahrani L, Rozi IEP, et al. Existence of the rdl mutant alleles among the Anopheles malaria vector in Indonesia[J]. Malar J,2012,11:57.
[36] Taylor-Wells J,Brooke BD,Bermudez I, et al. The neonicotinoid imidacloprid, and the pyrethroid deltamethrin, are antagonists of the insect Rdl GABA receptor[J]. J Neurochem,2015,135(4):705-713.
[37] Wood OR, Hanrahan S, Coetzee M, et al. Cuticle thickening associated with pyrethroid resistance in the major malaria vector Anopheles funestus[J]. Parasit Vectors,2010,3:67.
[38] Cornman RS, Togawa T, Dunn WA, et al. Annotation and analysis of a large cuticular protein family with the R & R consensus in Anopheles gambiae[J]. BMC Genomics,2008,9: 22.
[39] Dotson EM, Cornel AJ, Willis JH, et al. A family of pupal-specific cuticular protein genes in the mosquito Anopheles gambiae[J]. Insect Biochem Mol Biol,1998,28(7):459-472.
[40] Vannini L, Reed TW, Willis JH. Temporal and spatial expression of cuticular proteins of Anopheles gambiae implicated in insecticide resistance or differentiation of M/S incipient species[J]. Parasit Vectors,2014,7:24.
[41] Zhang J, Goyer C, Pelletier Y. Environmental stresses induce the expression of putative glycine-rich insect cuticular protein genes in adult Leptinotarsa decemlineata (Say)[J]. Insect Mol Biol,2008,17(3):209-216.
[42] Fang FJ, Wang WJ, Zhang DH, et al. The cuticle proteins: a putative role for deltamethrin resistance in Culex pipiens pallens[J]. Parasitol Res,2015,114(12):4421-4429.
[43] Gatton ML, Chitnis N, Churcher T, et al. The importance of mosquito behavioural adaptations to malaria control in Africa[J]. Evolution,2013,67(4):1218-1230.
[44] Jenkins AM, Muskavitch MA. Crepuscular behavioral variation and profiling of opsin genes in Anopheles gambiae and Anopheles stephensi (Diptera: Culicidae)[J]. J Med Entomol,2015,52(3):296-307. |