A study on detoxifying enzymes related to the resistance of Rattus losea to anticoagulant rodenticides under its selective pressure
YAO Dan-dan, JIANG Hong-xue, SUI Jing-jing, FENG Zhi-yong
Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, Guangdong Province, China
Abstract:Objective To explore the relationship between the resistance of Rattus losea and its metabolic detoxifying enzymes under the selective pressure of anticoagulant rodenticides, and to lay a foundation for elucidating the resistance mechanism. Methods A microplate reader was used to determine the contents and activities of cytochrome P450 (CYP450), NAD(P)H quinone oxidoreductase 1 (NQO1), and cytochrome b5 (Cytb5) in serum and liver of R. losea; meanwhile, comparative analyses were performed between different populations for the relationship of the difference with resistance level. Results The content and activity of detoxifying enzymes in liver were higher than those in serum in both sensitive and resistant R. losea populations in Jiangmen, Guangdong province, China. The content and activity of NQO1 and the content of Cytb5 in liver were significantly higher in the sensitive rodents than in the resistant rodents (t1=2.408, P1=0.037; t2=2.515, P2=0.031; t3=2.281, P3=0.046). However, there were no significant differences in the contents and activities of the three enzymes in serum, the content and activity of CYP450 in liver and the activity of Cytb5 (all P>0.05). Conclusion Among the three enzymes, only the content and activity of NQO1 and the content of Cytb5 in the liver are related to the insecticide resistance of R. losea. It is speculated that the resistance of rodents to anticoagulant rodenticides is a synergistic effect of multiple factors. Therefore, a comprehensive analysis of multiple factors should be performed to better clarify the mechanism of action of rodents' resistance to anticoagulant rodenticides.
姚丹丹, 姜洪雪, 隋晶晶, 冯志勇. 抗凝血杀鼠剂选择压力下黄毛鼠抗药性相关解毒酶的研究[J]. 中国媒介生物学及控制杂志, 2020, 31(6): 657-661.
YAO Dan-dan, JIANG Hong-xue, SUI Jing-jing, FENG Zhi-yong. A study on detoxifying enzymes related to the resistance of Rattus losea to anticoagulant rodenticides under its selective pressure. Chines Journal of Vector Biology and Control, 2020, 31(6): 657-661.
[1] 姚丹丹,冯志勇,隋晶晶,等. 黄毛鼠对抗凝血杀鼠剂回避行为的初步研究[J]. 中国媒介生物学及控制杂志,2013,24(3):211-214. Yao DD,Feng ZY,Sui JJ,et al. Preliminary study on avoidance behavior of Rattus losea to anticoagulant rodenticide[J]. Chin J Vector Biol Control,2013,24(3):211-214. [2] Pelz HJ,Rost S,Hünerberg M,et al. The genetic basis of resistance to anticoagulants in rodents[J]. Genetics,2005,170(4):1839-1847. DOI:10.1534/genetics.104.040360. [3] Rost S,Fregin A,Hünerberg M,et al. Site-directed mutagenesis of coumarin-type anticoagulant-sensitive VKORC1:evidence that highly conserved amino acids define structural requirements for enzymatic activity and inhibition by warfarin[J]. Thromb Haemost,2005,94(4):780-786. DOI:10.1160/TH05-02-0082. [4] 周斌芬,唐振华,高菊芳. 昆虫代谢抗性的研究进展[J]. 农药,2008,47(5):313-315,323. DOI:10.16820/j.cnki.1006-0413.2008.05.001. Zhou BF,Tang ZH,Gao JF. Advances in metabolic resistance to insecticides in insects[J]. Agrochemicals,2008,47(5):313-315,323. DOI:10.16820/j.cnki.1006-0413.2008.05.001. [5] 曾晓芃,于彩虹,高希武. 德国小蠊抗性与敏感品系细胞色素P450生化特征的研究[J]. 中国媒介生物学及控制杂志,2004,15(3):175-177,179. DOI:10.3969/j.issn.1003-4692.2004.03.005. Zeng XP,Yu CH,Gao XW. Study on cytochrome P450 biochemical characterization in susceptible strain and resistant population of German cockroach(Blattella germanica)[J]. Chin J Vector Biol Control,2004,15(3):175-177,179. DOI:10.3969/j.issn.1003-4692.2004.03.005. [6] Porter TD,Coon MJ. Cytochrome P450[J]. J Biol Chem,1991,266(21):13469-13472. [7] 汪希兰,宋磊,张龙,等. 两种诱导法对大鼠肝微粒体细胞色素P450酶含量的影响[J]. 贵州医药,2017,41(9):909-910. DOI:10.3969/j.issn.1000-744X.2017.09.004. Wang XL,Song L,Zhang L,et al. Effects of two different induction methods on liver microsomal cytochrome P450 in rats[J]. Guizhou Med J,2017,41(9):909-910. DOI:10.3969/j.issn.1000-744X.2017.09.004. [8] 夏小俊,金中初. NQO1酶及其被氧环境诱导表达的研究进展[J]. 生理科学进展,2002,33(3):225-229. Xia XJ,Jin ZC. Advances in the study of NAD(P)H:quinone oxidoreductase and its induction by cellular oxidative stress[J]. Prog Physiol Sci,2002,33(3):225-229. [9] 高志祥,林伟松,冯志勇,等. 广东省作物种植区害鼠群落结构调查研究[J]. 中国植保导刊,2011,31(6):35-37. DOI:10.3969/j.issn.1672-6820.2011.06.010. Gao ZX,Lin WS,Feng ZY,et al. Study on rodent community structure in crop field in Guangdong province[J]. China Plant Prot,2011,31(6):35-37. DOI:10.3969/j.issn.1672-6820.2011.06.010. [10] 冯志勇,姚丹丹,黄立胜,等. 黄毛鼠对第一代抗凝血灭鼠剂的抗药性监测[J]. 植物保护学报,2007,34(4):420-424. DOI:10.3321/j.issn:0577-7518.2007.04.017. Feng ZY,Yao DD,Huang LS,et al. Surveillance on the resistance of Rattus losea to the first-generation anticoagulants[J]. Acta Phytophy Sin,2007,34(4):420-424. DOI:10.3321/j.issn:0577-7518.2007.04.017. [11] 姚丹丹,梁练,胡杰,等. 湛江地区黄毛鼠对溴敌隆的敏感性研究[J]. 中国媒介生物学及控制杂志,2008,19(1):1-3. DOI:10.3969/j.issn.1003-4692.2008.01.001. Yao DD,Liang L,Hu J,et al. The susceptibility of Rattus losea to bromadiolone in Zhanjiang[J]. Chin J Vector Biol Control,2008,19(1):1-3. DOI:10.3969/j.issn.1003-4692.2008.01.001. [12] 隋晶晶,高志祥,姚丹丹,等. 血凝反应法检测黄毛鼠对抗凝血杀鼠剂抗性的可行性研究[J]. 中国媒介生物学及控制杂志,2013,24(3):208-210,214. Sui JJ,Gao ZX,Yao DD,et al. Study on the feasibility of blood clotting response test for determining resistance to anticoagulant rodenticide in Rattus losea[J]. Chin J Vector Biol Control,2013,24(3):208-210,214. [13] Wang JS,Feng ZY,Yao DD,et al. Warfarin resistance in Rattus losea in Guangdong province,China[J]. Pestic Biochem Physiol,2008,91(2):90-95. [14] 姚丹丹,姜洪雪,刘福佳,等. 广东省江门市黄毛鼠对第一代抗凝血杀鼠剂的抗药性及其与VKORC1基因的相关性研究[J]. 中国媒介生物学及控制杂志,2019,30(6):17-21. DOI:10.11853/j.issn.1003.8280.2019.06.004. Yao DD,Jiang HX,Liu FJ,et al. A study of the resistance of Rattus losea to the first-generation anticoagulant rodenticide and its correlation with the VKORC1 gene[J]. Chin J Vector Biol Control,2019,30(6):17-21. DOI:10.11853/j.issn.1003.8280.2019.06.004. [15] 宋英,李宁,王大伟,等. 鼠类对抗凝血类灭鼠剂抗药性的遗传机制[J]. 中国科学:生命科学,2016,46(5):619-626. DOI:10.1360/N052016-00161. Song Y,Li N,Wang DW,et al. Genetic mechanism of resistance to anticoagulant rodent poison in rodents[J]. Sci Sin Vitae,2016,46(5):619-626. DOI:10.1360/N052016-00161. [16] Wajih N,Sane DC,Hutson SM,et al. The inhibitory effect of calumenin on the vitamin K-dependent γ-carboxylation system:characterization of the system in normal and warfarin-resistant rats[J]. J Biol Chem,2004,279(24):25276-25283. DOI:10.1074/jbc.M40164520. [17] Markussen MD,Heiberg AC,Fredholm M,et al. Characterization of bromadiolone resistance in a Danish strain of Norway rats,Rattus norvegicus,by hepatic gene expression profiling of genes involved in vitamin K-dependent γ-carboxylation[J]. J Biochem Mol Toxicol,2007,21(6):373-381. DOI:10.1002/jbt.20201. [18] Guengerich FP,Dannan GA,Wright ST,et al. Purification and characterization of liver microsomal cytochromes P-450:electrophoretic,spectral,catalytic,and immunochemical properties and inducibility of eight isozymes isolated from rats treated with phenobarbital or β-naphthoflavone[J]. Biochemistry,1982,21(23):6019-6030. DOI:10.1021/bi00266a045. [19] Takeda K,Ikenaka Y,Tanikawa T,et al. Novel revelation of warfarin resistant mechanism in roof rats (Rattus rattus) using pharmacokinetic/pharmacodynamic analysis[J]. Pestic Biochem Physiol,2016,134:1-7. DOI:10.1016/j.pestbp.2016.04.004. [20] Boitet M,Hammed A,Chatron N,et al. Elevated difenacoum metabolism is involved in the difenacoum-resistant phenotype observed in Berkshire rats homozygous for the L120Q mutation in the vitamin K epoxide reductase complex subunit 1(Vkorc1) gene[J]. Pest Manag Sci,2018,74(6):1328-1334. DOI:10.1002/ps.4797. [21] Ishizuka M,Okajima F,Tanikawa T,et al. Elevated warfarin metabolism in warfarin-resistant roof rats (Rattus rattus) in Tokyo[J]. Drug Metab Dispos,2007,35(1):62-66. [22] 徐倩,徐国兵. 香豆素类化合物代谢研究进展[J]. 中国实验方剂学杂志,2015,21(3):222-225. DOI:10.13422/j.cnki.syfjx.2015030222. Xu Q,Xu GB. Metabolism research review of coumarin compounds[J]. Chin J Exp Tradit Med Formul,2015,21(3):222-225. DOI:10.13422/j.cnki.syfjx.2015030222.