A study on spatial characteristics and correlations of different types of dengue cases in mainland China, 2014-2018
YUE Yu-juan, REN Dong-sheng, LIU Xiao-bo, WU Hai-xia, GUO Yu-hong, ZHAO Ning, WANG Jun, LIU Qi-yong
State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
Abstract:Objective To explore the spatial characteristics and correlations of different types of dengue cases in key epidemic areas of dengue fever in mainland China. Methods Spatial visualization technology was used to analyze the spatial characteristics of dengue cases in Guangdong and Yunnan provinces from 2014 to 2018, and the Spearman correlation method was used to explore the correlations between different types of dengue cases. Results Dengue cases in the study area were mainly concentrated in Guangdong and Yunnan province from 2014 to 2018, there were 46 306 indigenous dengue cases, 2 304 overseas imported dengue cases, 79 domestically imported cases, and 625 domestically exported cases. Guangzhou of Guangdong province had the most indigenous cases (39 656). Ruili of Dehong Dai and Jingpo autonomous prefecture (Dehong prefecture) in Yunnan province had the most overseas imported cases (1 640). The main source of overseas imported cases came from Southeast Asia, the most of which came from Myanmar, reaching 1 876 cases. Domestically exported cases mainly came from Guangzhou, reaching 457 cases, which were distributed all over southern provinces of China. Indigenous cases were highly positively correlated with domestically imported cases and domestically exported cases, with coefficients of 0.811 and 0.933, respectively. In Ruili, Dehong prefecture, Yunnan province, the indigenous cases were highly correlated with overseas imported cases. Conclusion Dengue cases were concentrated in Guangdong and Yunnan provinces. Indigenous cases were highly correlated with domestically imported cases and domestically exported cases. The research findings are helpful for providing strategic prevention and control programs and taking effective measures for dengue prevention and control.
岳玉娟, 任东升, 刘小波, 吴海霞, 郭玉红, 赵宁, 王君, 刘起勇. 2014-2018年中国登革热病例空间特征及相关关系研究[J]. 中国媒介生物学及控制杂志, 2020, 31(5): 517-520.
YUE Yu-juan, REN Dong-sheng, LIU Xiao-bo, WU Hai-xia, GUO Yu-hong, ZHAO Ning, WANG Jun, LIU Qi-yong. A study on spatial characteristics and correlations of different types of dengue cases in mainland China, 2014-2018. Chines Journal of Vector Biology and Control, 2020, 31(5): 517-520.
[1] Guzman MG,Harris E. Dengue[J]. Lancet,2015,385(9966):453-465. DOI:10.1016/S0140-6736(14)60572-9. [2] 张霞意,张复春,胡凤玉,等. 2010年广州登革热患者临床及实验室特征分析[J]. 实用医学杂志,2011,27(19):3480-3482. DOI:10.3969/j.issn.1006-5725.2011.19.011. Zhang XY,Zhang FC,Hu FY,et al. Analysis of clinical and laboratory characteristics of dengue fever patients in Guangzhou in 2010[J]. J Pract Med,2011,27(19):3480-3482. DOI:10.3969/j.issn.1006-5725.2011.19.011. [3] 易波,徐荣,劳旭影,等. 宁波市2005-2012年登革热流行情况及其传播媒介调查[J]. 中国媒介生物学及控制杂志,2014,25(3):267-269. DOI:10.11853/j.issn.1003.4692.2014.03.019. Yi B,Xu R,Lao XY,et al. Epidemiological features and vector monitoring of dengue fever from 2005 to 2012 in Ningbo,China[J]. Chin J Vector Biol Control,2014,25(3):267-269. DOI:10.11853/j.issn.1003.4692.2014.03.019. [4] 杜建伟,潘先海. 中国登革热流行概况与流行特征[J]. 中华流行病学杂志,2010,31(12):1429-1433. DOI:10.3760/cma.j.issn.0254-6450.2010.12.025. Du JW,Pan XH. Prevalent status and features of dengue fever in China[J]. Chin J Epidemiol,2010,31(12):1429-1433. DOI:10.3760/cma.j.issn.0254-6450.2010.12.025. [5] Wu JY,Lun ZR,James AA,et al. Dengue fever in mainland China[J]. Am J Trop Med Hyg,2010,83(3):664-671. DOI:10.4269/ajtmh.2010.09-0755. [6] Huang XY,Ma HX,Wang HF,et al. Outbreak of dengue fever in central China,2013[J]. Biomed Environ Sci,2014,27(11):894-897. DOI:10.3967/bes2014.125. [7] 岳玉娟,任东升,刘起勇. 2005-2013年中国大陆登革热疫情时空分布[J]. 疾病监测,2015,30(7):555-560. DOI:10.3784/j.issn.1003-9961.2015.07.008. Yue YJ,Ren DS,Liu QY. Spatial-temporal distribution of dengue fever in the mainland of China,2005-2013[J]. Dis Surveill,2015,30(7):555-560. DOI:10.3784/j.issn.1003-9961.2015.07.008. [8] Sang SW,Gu SH,Bi P,et al. Predicting unprecedented dengue outbreak using imported cases and climatic factors in Guangzhou,2014[J]. PLoS Negl Trop Dis,2015,9(5):e0003808. DOI:10.1371/journal.pntd.0003808. [9] Lai SJ,Huang ZJ,Zhou H,et al. The changing epidemiology of dengue in China,1990-2014:a descriptive analysis of 25 years of nationwide surveillance data[J]. BMC Med,2015,13:100. DOI:10.1186/s12916-015-0336-1. [10] Yue YJ,Sun JM,Liu XB,et al. Spatial analysis of dengue fever and exploration its environmental and socio-economic risk factors using ordinary least squares:a case study in five districts of Guangzhou city,China,2014[J]. Int J Infect Dis,2018,75:39-48. DOI:10.1016/j.ijid.2018.07.023. [11] Yue YJ,Liu QY. Exploring epidemiological characteristics of domestic imported dengue fever in mainland China,2014-2018[J]. Int J Environ Res Public Health,2019,16(20):3901. DOI:10.3390/ijerph16203901. [12] 中华人民共和国卫生部. WS 216-2001登革热诊断标准及处理原则[S]. 北京:中国标准出版社,2004. Ministry of Health of the People's Republic of China. WS 216-2001 Diagnostic criteria and principle of management of dengue fever[S]. Beijing:Standards Press of China,2004. [13] 中华人民共和国卫生部. WS 216-2008登革热诊断[S]. 北京:中国标准出版社,2008. Ministry of Health of the People's Republic of China. WS 216-2008 Diagnostic criteria and principle of management of dengue fever[S]. Beijing:Standards Press of China,2008. [14] ESRI. ArcGIS 10.3 help[M]. United States:ESRI Press,2017:20-23. [15] 方积乾,徐勇勇,陈峰. 卫生统计学[M]. 7版. 北京:人民卫生出版社,2012:200-201. Fang JQ,Xu YY,Chen F. Health statistics[M]. Beijing:People's Health Press,2012:200-201. [16] Yue YJ,Liu XB,Xu M,et al. Epidemiological dynamics of dengue fever in mainland China,2014-2018[J]. Int J Infect Dis,2019,86:82-93. DOI:10.1016/j.ijid.2019.06.015. [17] Sun JM,Lu L,Wu HX,et al. Epidemiological trends of dengue in mainland China,2005-2015[J]. Int J Infect Dis,2017,57:86-91. DOI:10.1016/j.ijid.2017.02.007. [18] Sang SW,Yin WW,Bi P,et al. Predicting local dengue transmission in Guangzhou,China,through the influence of imported cases,mosquito density and climate variability[J]. PLoS One,2014,9(7):e102755. DOI:10.1371/journal.pone. 0102755.