中国媒介生物学及控制杂志 ›› 2017, Vol. 28 ›› Issue (4): 318-321.DOI: 10.11853/j.issn.1003.8280.2017.04.004

• 论著 • 上一篇    下一篇

用药条件下马胃蝇蛆排出动态模型的建立

金冬梅1, 黄河清1, 布兰2, 王振彪3, 张东1, 刘善辉4, 李凯1   

  1. 1 北京林业大学自然保护区学院, 北京 100083;
    2 新疆卡拉麦里山有蹄类自然保护区阿勒泰管理站, 新疆 阿勒泰 836500;
    3 新疆野马繁殖研究中心, 乌鲁木齐 830000;
    4 北京语言大学, 北京 100083
  • 收稿日期:2017-03-16 出版日期:2017-08-20 发布日期:2017-08-20
  • 通讯作者: 李凯,Email:likai_sino@sina.com
  • 作者简介:金冬梅,女,硕士,主要从事濒危物种寄生虫病研究,Email:snow2009jdm@163.com
  • 基金资助:
    国家自然科学基金(31670538);中央高校基本科研业务费专项资金资助项目(JC2015-04,16YBB17);国家林业局野生动植物保护与自然保护区管理司年度项目(2015-123)

Study on the discharge dynamics of Gasterophilus spp.larvae after administration of ivermectin

JIN Dong-mei1, HUANG He-qing1, BU Lan2, WANG Zhen-biao3, ZHANG Dong1, LIU Shan-hui4, LI Kai1   

  1. 1 College of Nature Conversation, Beijing Forestry University, Beijing 100083, China;
    2 Altay Management Station, Mt. Kalamaili Ungulate Nature Reserve;
    3 Xinjiang Research Center for Breeding Przewalski's Horse;
    4 Beijing Language and Culture University
  • Received:2017-03-16 Online:2017-08-20 Published:2017-08-20
  • Supported by:
    Supported by the National Science Foundation of China (No. 31670538), Fundamental Research Funds for the Central Universities (No. JC2015-04, 16YBB17) and Project of Department for Wildlife and Forest Plants Protection, SFA of China (No. 2015-123)

摘要: 目的 通过拟合马科动物服用伊维菌素后排出的马胃蝇蛆数量动态变化,建立马胃蝇蛆排出动态模型,根据模型预测排虫高峰,为新鲜蝇蛆的大量采集提供参考。方法 随机选取家马和普氏野马各3匹,分别圈养在临时搭建的小围栏内;统计服用伊维菌素后单位时段各实验对象排出的马胃蝇蛆数,计算家马和普氏野马在各时段排出的平均马胃蝇蛆比率,采用Quadratic、Compound、Cubic模型对排虫动态进行拟合。结果 在3种拟合模型中,Cubic模型拟合马科动物马胃蝇蛆排出动态的效果最好(家马R2修正值为0.837,P=0.003;野马R2修正值为0.940,P=0.000),家马和野马排虫动态拟合的回归方程分别为Y家马=-1.302 766+0.075 436t-0.001 177t2+0.000 006t3(27.6≤t≤87.9),Y野马=-1.178 999+0.071 902t-0.001 157t2+0.000 006t3(25.7≤t≤84.7)。由回归方程解出,家马和野马排虫高峰分别出现在服药后49.0和47.1 h。结论 不同马科动物排虫动态的一致性说明驱虫效果与马科动物种类及其马胃蝇蛆感染量无关;所得回归方程量化了早期的观察结果,研究结论有助于提高马胃蝇蛆的采集效率和获取新鲜蝇蛆样本,为进一步研究奠定了基础。

关键词: 马胃蝇蛆, 排虫动态, 拟合, 排虫高峰

Abstract: Objective The discharge dynamic models of Gasterophilus spp. larvae were established by fitting the number of larvaeshedding from the equids after taking ivermectin. According to the models, the peaks of larvae discharge were predicted, which could help the collection of fresh maggots. Methods Three domestic horses and three Przewalski's horses were randomly selected and were kept in small enclosures separately. Maggots of each animal was harvested per unit time after taking ivermectin, the average rates of discharge larvae were calculated for both domestic and Przewalski's horses. Quadratic, Compound and Cubic models were used to fit the dynamics of larvae discharge. Results Among the three fitting models, the Cubic models were the best models to fit the discharge rate of the larvae (domestic horses:adjusted R2=0.837; Przewalski's horses:adjusted R2=0.940). The regression equations of the dynamic fitting of domestic and Przewalski's horses were:Yd=-1.302 766+0.075 436t-0.001 177t2+0.000 006t3 (27.6 ≤ t ≤ 87.9), Yp=-1.178 999+0.071 902t-0.001 157t2+0.000 006t3 (25.7 ≤ t ≤ 84.7). According to the regression equations, the peak values of domestic and Przewalski's horses were 49.0 h and 47.1 h. Conclusion The efficacy was not related to the equine species and infection intensity of Gasterophilus spp. larvae. The regression equation quantified the early observations, the conclusion could help to improve the collection efficiency and obtain fresh maggot samples, which laid a foundation for further study.

Key words: Gasterophilus spp.larvae, Larvae discharge dynamics, Fit, Peak of larvae discharge

中图分类号: