中国媒介生物学及控制杂志 ›› 2022, Vol. 33 ›› Issue (6): 912-918.DOI: 10.11853/j.issn.1003.8280.2022.06.027
• 综述 • 上一篇
谭若云1, 林君芬2,3, 李傅冬2,3, 谢璐1, 张欣悦1, 马海燕1
收稿日期:
2022-08-18
出版日期:
2022-12-20
发布日期:
2022-12-09
通讯作者:
马海燕,E-mail:mahaiyan@hznu.edu.cn;林君芬,E-mail:jflin@cdc.zj.cn
作者简介:
谭若云,女,在读硕士,主要从事流行病与卫生统计学研究,E-mail:2020111012038@stu.hznu.edu.cn
基金资助:
TAN Ruo-yun1, LIN Jun-fen2,3, LI Fu-dong2,3, XIE Lu1, ZHANG Xin-yue1, MA Hai-yan1
Received:
2022-08-18
Online:
2022-12-20
Published:
2022-12-09
Supported by:
摘要: 蚊媒传染病仍是我国较为常见的疾病,有效的监测预警是应对疫情的重要环节。目前,传染病的预警手段呈现多元化且向大数据发展的趋势,为推动蚊媒传染病的多阶段多点预警研究,该文根据传染病疫情的发生发展过程将预警分为3个阶段,并对国内外蚊媒传染病不同阶段的预警进行综述,为蚊媒传染病的防控研究和实践提供参考。
中图分类号:
谭若云, 林君芬, 李傅冬, 谢璐, 张欣悦, 马海燕. 基于疫情不同发展阶段的蚊媒传染病预警技术研究进展[J]. 中国媒介生物学及控制杂志, 2022, 33(6): 912-918.
TAN Ruo-yun, LIN Jun-fen, LI Fu-dong, XIE Lu, ZHANG Xin-yue, MA Hai-yan. Research progress of early warning technology for mosquito-borne disease based on different developmental stages of epidemic[J]. Chinese Journal of Vector Biology and Control, 2022, 33(6): 912-918.
[1] World Health Organization. Vector-borne diseases[EB/OL]. (2020-03-02)[2022-03-27]. https://www.who.int/news-room/fact-sheets/detail/vector-borne-diseases. [2] World Health Organization. Global vector control response 2017-2030:A strategic approach to tackle vector-borne diseases[EB/OL]. (2017-10-02)[2022-03-27]. https://www.who.int/publications/i/item/WHO-HTM-GVCR-2017.01. [3] World Health Organization. Global strategy for dengue prevention and control 2012-2020[R]. Geneva:WHO,2012:14. [4] Tekola B,Myers L,Lubroth J,et al. International health threats and global early warning and response mechanisms[J]. Rev Sci Tech,2017,36(2):657-670. DOI:10.20506/rst.36.2.2683. [5] Kucharski A. The rules of contagion:Why things spread-and why they stop[M]. London:Wellcome Collection,2020:4. [6] Schorderet-Weber S,Noack S,Selzer PM,et al. Blocking transmission of vector-borne diseases[J]. Int J Parasitol Drugs Drug Resist,2017,7(1):90-109. DOI:10.1016/j.ijpddr.2017. 01.004. [7] 杨维中. 传染病预警理论与实践[M]. 北京:人民卫生出版社,2012:41-43,57-60,166,169. Yang WZ. Early warning of infectious disease theory and practice[M]. Beijing:People's Medical Publishing House,2012:41-43,57-60,166,169. (in Chinese) [8] World Health Organization. Dengue and severe dengue[EB/OL]. (2022-01-10)[2022-03-27]. https://www.who.int/news-room/fact-sheets/detail/dengue-and-severe-dengue. [9] Franklinos LHV,Jones KE,Redding DW,et al. The effect of global change on mosquito-borne disease[J]. Lancet Infect Dis,2019,19(9):e302-e312. DOI:10.1016/S1473-3099(19)30161-6. [10] Ogden NH,Lindsay LR. Effects of climate and climate change on vectors and vector-borne diseases:Ticks are different[J]. Trends Parasitol,2016,32(8):646-656. DOI:10.1016/j.pt.2016.04.015. [11] Sang SW,Yin WW,Bi P,et al. Predicting local dengue transmission in Guangzhou,China,through the influence of imported cases,mosquito density and climate variability[J]. PLoS One,2014,9(7):e102755. DOI:10.1371/journal.pone. 0102755. [12] Macedo GA,De Araújo JMG,Schatzmayr HG,et al. Virological surveillance for early warning of dengue epidemics in the state of Rio de Janeiro,Brazil[J]. Trans R Soc Trop Med Hyg,2013,107(3):141-146. DOI:10.1093/trstmh/trs091. [13] Chang CJ,Chen CS,Tien CJ,et al. Epidemiological,clinical and climatic characteristics of dengue fever in Kaohsiung city,Taiwan with implication for prevention and control[J]. PLoS One,2018,13(1):e0190637. DOI:10.1371/journal.pone. 0190637. [14] Aryaprema VS,Xue RD. Breteau index as a promising early warning signal for dengue fever outbreaks in the Colombo district,Sri Lanka[J]. Acta Trop,2019,199:105155. DOI:10.1016/j.actatropica.2019.105155. [15] Poh KC,Chaves LF,Reyna-Nava M,et al. The influence of weather and weather variability on mosquito abundance and infection with west Nile virus in Harris county,Texas,USA[J]. Sci Total Environ,2019,675:260-272. DOI:10.1016/j.scitotenv. 2019.04.109. [16] Sudre B,Rossi M,Van Bortel W,et al. Mapping environmental suitability for malaria transmission,Greece[J]. Emerg Infect Dis,2013,19(5):784-786. DOI:10.3201/eid1905.120811. [17] Sirisena P,Noordeen F,Kurukulasuriya H,et al. Effect of climatic factors and population density on the distribution of dengue in Sri Lanka:A GIS based evaluation for prediction of outbreaks[J]. PLoS One,2017,12(1):e0166806. DOI:10.1371/journal.pone.0166806. [18] Teng Y,Bi DH,Xie GG,et al. Dynamic forecasting of Zika epidemics using Google trends[J]. PLoS One,2017,12(1):e0165085. DOI:10.1371/journal.pone.0165085. [19] Pergantas P,Papanikolaou NE,Malesios C,et al. Towards a semi-automatic early warning system for vector-borne diseases[J]. Int J Environ Res Public Health,2021,18(4):1823. DOI:10.3390/ijerph18041823. [20] Nosrat C,Altamirano J,Anyamba A,et al. Impact of recent climate extremes on mosquito-borne disease transmission in Kenya[J]. PLoS Negl Trop Dis,2021,15(3):e0009182. DOI:10.1371/journal.pntd.0009182. [21] Strauss RA,Castro JS,Reintjes R,et al. Google dengue trends:An indicator of epidemic behavior. The Venezuelan case[J]. Int J Med Inform,2017,104:26-30. DOI:10.1016/j.ijmedinf.2017. 05.003. [22] Yang SH,Kou SC,Lu F,et al. Advances in using internet searches to track dengue[J]. PLoS Comput Biol,2017,13(7):e1005607. DOI:10.1371/journal.pcbi.1005607. [23] 解华山,刘凌云. 荆门市常见传染病季节性分布特征动态分析[J]. 公共卫生与预防医学,2011,22(2):45-48. Xie HS,Liu LY. Dynamic analysis for the seasonal distribution of common infectious diseases in Jingmen[J]. J Pub Health Prev Med,2011,22(2):45-48. (in Chinese) [24] 杨维中,邢慧娴,王汉章,等. 七种传染病控制图法预警技术研究[J]. 中华流行病学杂志,2004,25(12):1039-1041. DOI:10.3760/j.issn:0254-6450.2004.12.007. Yang WZ,Xing HX,Wang HZ,et al. A study on early detection for seven infectious diseases[J]. Chin J Epidemiol,2004,25(12):1039-1041. DOI:10.3760/j.issn:0254-6450.2004.12.007.(in Chinese) [25] Chen P,Fu XJ,Ma S,et al. Early dengue outbreak detection modeling based on dengue incidences in Singapore during 2012 to 2017[J]. Stat Med,2020,39(15):2101-2114. DOI:10.1002/sim.8535. [26] Pelecanos AM,Ryan PA,Gatton ML. Outbreak detection algorithms for seasonal disease data:A case study using Ross River virus disease[J]. BMC Med Inform Decis Mak,2010,10:74. DOI:10.1186/1472-6947-10-74. [27] 尹遵栋,罗会明,李艺星,等. 时间序列分析(自回归求和移动平均模型)在流行性乙型脑炎预测中的应用[J]. 中国疫苗和免疫,2010,16(5):457-461. Yin ZD,Luo HM,Li YX,et al. The application of autoregressive integrated moving average model on the prediction of Japanese encephalitis cases[J]. Chin J Vac Immun,2010,16(5):457-461. (in Chinese) [28] Bi P,Tong SL,Donald K,et al. Climate variability and the dengue outbreak in Townsville,Queensland,1992-1993[J]. Environmental Health,2001,1(4):54-60. [29] Akinbobola A,Omotosho JB. Predicting malaria occurrence in southwest and north central Nigeria using meteorological parameters[J]. Int J Biometeorol,2013,57(5):721-728. DOI:10.1007/s00484-012-0599-6. [30] 赵丹. 基于影响因素的登革热预警技术研究[D]. 北京:中国疾病预防控制中心,2012. Zhao D. Study on early warning technique of dengue fever based on imported cases,vectors and climate factors[D]. Beijing:Chinese Center for Disease Control and Prevention,2012. (in Chinese) [31] Polwiang S. The time series seasonal patterns of dengue fever and associated weather variables in Bangkok (2003-2017)[J]. BMC Infect Dis,2020,20(1):208. DOI:10.1186/s12879-020-4902-6. [32] 张蕾洁. 甘肃省流行性乙型脑炎发病状态及预测预警研究[D]. 兰州:兰州大学,2020. DOI:10.27204/d.cnki.glzhu.2020. 000582. Zhang LJ. Study on the epidemic dynamics of Japanese encephalitis and the development of corresponding forecast and precaution model in Gansu province[D]. Lanzhou:Lanzhou University,2020. DOI:10.27204/d.cnki.glzhu.2020.000582.(in Chinese) [33] Zhang HL,Li ZJ,Lai SJ,et al. Evaluation of the performance of a dengue outbreak detection tool for China[J]. PLoS One,2014,9(8):e106144. DOI:10.1371/journal.pone.0106144. [34] 郭海强,丁海龙,曲波,等. 1988-2010年全国疟疾发病率的灰色预测模型研究[J]. 热带医学杂志,2011,11(6):639-640,643. Guo HQ,Ding HL,Qu B,et al. A study on the trend of malaria incidence in China in the recent 20 years with GM (1,1)[J]. J Trop Med,2011,11(6):639-640,643. (in Chinese) [35] 官金兰,陈芷棋,邵思铭,等. 广州市登革热传染病的灰色预测模型[J]. 佳木斯职业学院学报,2016(9):413. Guan JL,Chen ZQ,Shao SM,et al. Grey prediction model of dengue fever infectious disease in Guangzhou city[J]. J Jiamusi Vocat Inst,2016(9):413. (in Chinese) [36] 陶长余,陈郁,章士军. 中国乙脑发病率趋势分析及预测[J]. 医学动物防制,2016,32(3):323-324,327. DOI:10.7629/yxdwfz201603028. Tao CY,Chen Y,Zhang SJ. Analysis and prediction on the epidemic encephalitis B incidences in China[J]. J Med Pest Control,2016,32(3):323-324,327. DOI:10.7629/yxdwfz 201603028.(in Chinese) [37] 叶烨,劳飞翔,韦斯亮,等. 1950-2014年广西横县疟疾疫情流行病学分析及Markov模型预测[J]. 微生物学免疫学进展,2019,47(1):54-59. DOI:10.13309/j.cnki.pmi.2019.01.010. Ye Y,Lao FX,Wei SL,et al. Epidemiological analysis and Markov model prediction of malaria epidemics from 1950 to 2014 in Heng county,Guangxi[J]. Prog Microbiol Immunol,2019,47(1):54-59. DOI:10.13309/j.cnki.pmi.2019.01.010.(in Chinese) [38] Shi BY,Lin S,Tan Q,et al. Inference and prediction of malaria transmission dynamics using time series data[J]. Infect Dis Poverty,2020,9(1):95. DOI:10.1186/s40249-020-00696-1. [39] 张轩,贺娟. 基于中医运气理论探讨流行性乙型脑炎高发与前期气象因素的相关性并建立预测模型[J]. 北京中医药大学学报,2015,38(1):8-13. DOI:10.3969/j.issn.1006-2157.2015. 01.002. Zhang X,He J. Correlation between incidence of Japanese encephalitis and meteorological factors and establishment of forecast model based on theory of five circuits and six qi[J]. J Beijing Univ Trad Chin Med,2015,38(1):8-13. DOI:10.3969/j.issn.1006-2157.2015.01.002.(in Chinese) [40] Ayanlade A,Nwayor IJ,Sergi C,et al. Early warning climate indices for malaria and meningitis in tropical ecological zones[J]. Sci Rep,2020,10(1):14303. DOI:10.1038/s41598-020-71094-8. [41] Althouse BM,Ng YY,Cummings DAT. Prediction of dengue incidence using search query surveillance[J]. PLoS Negl Trop Dis,2011,5(8):e1258. DOI:10.1371/journal.pntd.0001258. [42] Verma AK,Kuppili V,Srivastava SK,et al. A new backpropagation neural network classification model for prediction of incidence of malaria[J]. Front Biosci (Landmark Ed),2020,25(2):299-334. DOI:10.2741/4808. [43] 陈业滨,李卫红,华家敏,等. 基于机器学习的登革热时空扩散预测模型对比分析[J]. 地理信息世界,2016,23(6):8-14. DOI:10.3969/j.issn.1672-1586.2016.06.002. Chen YB,Li WH,Hua JM,et al. Comparing of spatio-temporal diffusion prediction models of dengue fevers based on machine learning[J]. Geomatics World,2016,23(6):8-14. DOI:10.3969/j.issn.1672-1586.2016.06.002.(in Chinese) [44] 黄宇琳,赵永谦,曹峥,等. 基于随机森林回归模型的登革热风险评估研究[J]. 华南预防医学,2019,45(1):26-31. DOI:10.13217/j.scjpm.2019.0026. Huang YL,Zhao YQ,Cao Z,et al. Risk assessment of dengue fever based on random forest model[J]. South China J Prev Med,2019,45(1):26-31. DOI:10.13217/j.scjpm.2019.0026.(in Chinese) [45] Keyel AC,Timm OE,Backenson PB,et al. Seasonal temperatures and hydrological conditions improve the prediction of west Nile virus infection rates in Culex mosquitoes and human case counts in New York and Connecticut[J]. PLoS One,2019,14(6):e0217854. DOI:10.1371/journal.pone.0217854. [46] Buczak AL,Baugher B,Guven E,et al. Fuzzy association rule mining and classification for the prediction of malaria in South Korea[J]. BMC Med Inform Decis Mak,2015,15:47. DOI:10.1186/s12911-015-0170-6. [47] 杨慧欣,赵晨皓,雒静静,等. 2011-2018年我国登革热疫情时间序列分析及空间自相关分析[J]. 中华疾病控制杂志,2019,23(10):1250-1254. DOI:10.16462/j.cnki.zhjbkz.2019. 10.018. Yang HX,Zhao CH,Luo JJ,et al. Time series analysis and spatial autocorrelation analysis of dengue data in China from 2011 to 2018[J]. Chin J Dis Control Prev,2019,23(10):1250-1254. DOI:10.16462/j.cnki.zhjbkz.2019.10.018.(in Chinese) [48] Costa SDSB,Branco MDRFC,Vasconcelos VV,et al. Autoregressive spatial modeling of possible cases of dengue,chikungunya,and Zika in the capital of Northeastern Brazil[J]. Rev Soc Bras Med Trop,2021,54:e0223. DOI:10.1590/0037-8682-0223-2021. [49] 魏孔福,刘新凤,任晓卫,等. Flexible空间扫描统计量在甘肃省自然疫源性疾病空间聚集性研究中的应用[J]. 中国媒介生物学及控制杂志,2015,26(5):454-457. DOI:10.11853/j.issn.1003.4692.2015.05.006. Wei KF,Liu XF,Ren XW,et al. Study on the application of flexible spatial scan statistic to spatial aggregation of the natural foci diseases[J]. Chin J Vector Biol Control,2015,26(5):454-457. DOI:10.11853/j.issn.1003.4692.2015.05.006.(in Chinese) [50] 顾蓉艳. 基于时空重排扫描统计量的勐腊县登革热症候群预警参数筛选[D]. 昆明:昆明医科大学,2020. DOI:10.27202/d.cnki.gkmyc.2020.000252. Gu RY. Screening of early warning parameters of dengue fever syndrome in Mengla county based on space-time rearrangement scanning statistics[D]. Kunming:Kunming Medical University,2020. DOI:10.27202/d.cnki.gkmyc.2020.000252.(in Chinese) [51] Xia J,Cai SX,Zhang HX,et al. Spatial,temporal,and spatiotemporal analysis of malaria in Hubei province,China from 2004-2011[J]. Malar J,2015,14:145. DOI:10.1186/s12936-015-0650-2. [52] 敖琳珺,张昱勤,许欢,等. 评估气象对广东省登革热时空预测模型的贡献[J]. 现代预防医学,2020,47(16):2899-2903. Ao LJ,Zhang YQ,Xu H,et al. Assessing the contribution of meteorology to the spatio-temporal prediction model of dengue in Guangdong province[J]. Mod Prev Med,2020,47(16):2899-2903. (in Chinese) [53] Haddawy P,Hasan AHMI,Kasantikul R,et al. Spatiotemporal Bayesian networks for malaria prediction[J]. Artif Intell Med,2018,84:127-138. DOI:10.1016/j.artmed.2017.12.002. [54] 赵丹,李中杰,周航,等. 登革热预警技术研究进展[J]. 中华流行病学杂志,2012,33(5):540-543. DOI:10.3760/cma.j.issn.0254-6450.2012.05.022. Zhao D,Li ZJ,Zhou H,et al. Review on the research progress of early-warning system on dengue fever[J]. Chin J Epidemiol,2012,33(5):540-543. DOI:10.3760/cma.j.issn.0254-6450. 2012.05.022.(in Chinese) [55] Halide H,Ridd P. A predictive model for dengue hemorrhagic fever epidemics[J]. Int J Environ Health Res,2008,18(4):253-265. DOI:10.1080/09603120801966043. [56] 王晓东,赵彤言. 3S技术简介及在研究蚊及蚊媒传染病分布和控制中的应用[J]. 中国媒介生物学及控制杂志,2004,15(3):241-244. DOI:10.3969/j.issn.1003-4692.2004.03.034. Wang XD,Zhao TY. Introduction of "3S" technique and application in study on control and prevention of vector-borne diseases[J]. Chin J Vector Biol Control,2004,15(3):241-244. DOI:10.3969/j.issn.1003-4692.2004.03.034.(in Chinese) [57] Peterson AT,Martínez-Campos C,Nakazawa Y,et al. Time-specific ecological niche modeling predicts spatial dynamics of vector insects and human dengue cases[J]. Trans R Soc Trop Med Hyg,2005,99(9):647-655. DOI:10.1016/j.trstmh.2005. 02.004. [58] 杨迎宇,王莹莹,陈芸,等. 上海市宝山区登革热媒介伊蚊密度指数与气象因素滞后效应分析[J]. 中国媒介生物学及控制杂志,2021,32(3):286-290. DOI:10.11853/j.issn.1003.8280. 2021.03.006. Yang YY,Wang YY,Chen Y,et al. An analysis of lag effects of meteorological factors on Aedes density indices in Baoshan district,Shanghai,China[J]. Chin J Vector Biol Control,2021,32(3):286-290. DOI:10.11853/j.issn.1003.8280.2021.03.006.(in Chinese) |
[1] | . 2021年全国病媒生物鼠传病原监测报告[J]. 中国媒介生物学及控制杂志, 2023, 34(1): 1-8. |
[2] | 张家勇, 王纯玉, 白玉银, 李志, 张稷博, 丁俊. 辽宁省2018-2020年鼠类种群密度与季节消长监测分析[J]. 中国媒介生物学及控制杂志, 2023, 34(1): 39-43. |
[3] | 胡雅劼, 张镇川, 李玲玲, 余技钢, 李观翠. 四川省2017-2021年成蚊生态学特征分析[J]. 中国媒介生物学及控制杂志, 2023, 34(1): 44-47. |
[4] | 郭慧, 柳静, 毛伟平, 丁浩, 武茜茜, 周良才, 吴丽群, 陈晓敏. 武汉市2018-2021年媒介伊蚊生态学监测结果分析[J]. 中国媒介生物学及控制杂志, 2023, 34(1): 48-52. |
[5] | 张璐, 韦晓慧, 常楠, 李泓运, 司晓燕, 白雪峰, 王君, 刘起勇. 内蒙古锡林郭勒盟2012-2021年鼠类寄生蚤构成和蚤指数时空分布特征分析[J]. 中国媒介生物学及控制杂志, 2023, 34(1): 82-90. |
[6] | 杨仁东, 房元圣, 张荣娜, 梁作如, 戚晓鹏. 中国疟疾防控技术能力调查[J]. 中国媒介生物学及控制杂志, 2023, 34(1): 94-100. |
[7] | 成朔, 孙琪, 王延东, 张学庆, 景晓, 王学军. 山东省淄博市2020年白纹伊蚊生态学监测及抗药性现状研究[J]. 中国媒介生物学及控制杂志, 2022, 33(6): 815-819. |
[8] | 杨新艳, 钟汶兵, 林怡, 蔡芳, 刘义, 邝芝正. 海口市美舍河沿岸2021年登革热媒介白纹伊蚊监测分析[J]. 中国媒介生物学及控制杂志, 2022, 33(6): 823-827. |
[9] | 江汉鹏, 饶志云, 凌春燕, 杨兴华, 谢军. 江西省抚州市2021年白纹伊蚊生态学、抗药性监测及卫生杀虫剂使用状况调查[J]. 中国媒介生物学及控制杂志, 2022, 33(6): 828-833. |
[10] | 王鸿宇, 赵宛莹, 石昊宁, 杨彦清, 霍锡元, 刘国军, 侯祥, 唐云锋, 李京. 山东省潍坊市2013-2019年鼠类生态特征及其与气象因素的相关性研究[J]. 中国媒介生物学及控制杂志, 2022, 33(6): 834-837. |
[11] | 刘起勇, 刘小波, 常楠, 张璐. 2012-2021年我国媒介生物及相关传染病监测控制进展及成效[J]. 中国媒介生物学及控制杂志, 2022, 33(5): 613-621. |
[12] | 石健, 周冬梅, 屈志强, 刘昊晖, 廖克昌, 黄超俊, 汤洪洋, 姜斯阳, 唐金芳, 黄家运. 南宁市2019年登革热暴发疫情与当年伊蚊监测数据分析[J]. 中国媒介生物学及控制杂志, 2022, 33(5): 689-695. |
[13] | 宋富成, 修璟威, 王伟, 马小芳, 李炳辉, 孙庚晓, 孙钦同, 姜洪荣, 刘砚涛. 2017-2021年青岛市国家级鼠类监测点监测报告[J]. 中国媒介生物学及控制杂志, 2022, 33(5): 696-700. |
[14] | 王金娜, 李天奇, 罗明宇, 吴瑜燕, 刘钦梅, 龚震宇. 浙江省2017-2020年蜱生态学监测结果分析[J]. 中国媒介生物学及控制杂志, 2022, 33(4): 466-470. |
[15] | 张乾通, 孙继民, 凌锋, 施旭光, 任江萍, 郭颂, 张蓉, 刘营. 浙江省2021年发热伴血小板减少综合征报告病例及蜱媒监测结果分析[J]. 中国媒介生物学及控制杂志, 2022, 33(4): 485-488. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
中国媒介生物学及控制杂志 © 2021 版权所有
地址:北京昌平区昌百路155号 电话:010-58900731
Email:bingmei@icdc.cn
网址:http://www.bmsw.net.cn
技术支持:010-62662699
总访问:
今日访问:
当前在线: