[1] 吴福桢. 中国常见蜚蠊种类及其为害、利用与防治的调查研究[J]. 昆虫学报, 1987, 30(4):430-438. DOI:10.16380/j.kcxb.1987.04.012.Wu FZ. Investigations on domiciliary cockroaches from China[J]. Acta Entomol Sin, 1987, 30(4):430-438. DOI:10.16380/j.kcxb.1987.04.012. [2] Jarujareet W, Kobayashi M, Taira K, et al. The role of the American cockroach (Periplaneta americana) as transport host of Eimeria tenella to chickens[J]. Parasitol Res, 2019, 118(7):2311-2315. DOI:10.1007/s00436-019-06348-0. [3] Guzman J, Vilcinskas A. Bacteria associated with cockroaches:health risk or biotechnological opportunity?[J]. Appl Microbiol Biotechnol, 2020, 104(24):10369-10387. DOI:10.1007/s00253-020-10973-6. [4] Bargmann CI. Comparative chemosensation from receptors to ecology[J]. Nature, 2006, 444(7117):295-301. DOI:10.1038/nature05402. [5] Luo YC, Carlson JR. Sensory biology:structure of an insect chemoreceptor[J]. Curr Biol, 2018, 28(20):R1202-R1205. DOI:10.1016/j.cub.2018.09.002. [6] Brito NF, Moreira MF, Melo ACA. A look inside odorant-binding proteins in insect chemoreception[J]. J Insect Physiol, 2016, 95:51-65. DOI:10.1016/j.jinsphys.2016.09.008. [7] Gao YY, Huang QY, Xu H. Silencing orco impaired the ability to perceive trail pheromones and affected locomotion behavior in two termite species[J]. J Econ Entomol, 2020, 113(6):2941-2949. DOI:10.1093/jee/toaa248. [8] Hill CA, Fox AN, Pitts RJ, et al. G protein-coupled receptors in Anopheles gambiae[J]. Science, 2002, 298(5591):176-178. DOI:10.1126/science.1076196. [9] Huff RM, Jason Pitts R. Carboxylic acid responses by a conserved odorant receptor in culicine vector mosquitoes[J]. Insect Mol Biol, 2020, 29(6):523-530. DOI:10.1111/imb.12661. [10] Eliash N, Thangarajan S, Goldenberg I, et al. Varroa chemosensory proteins:some are conserved across Arthropoda but others are arachnid specific[J]. Insect Mol Biol, 2019, 28(3):321-341. DOI:10.1111/imb.12553. [11] Li S, Zhu SM, Jia QQ, et al. The genomic and functional landscapes of developmental plasticity in the American cockroach[J]. Nat Commun, 2018, 9(1):1008. DOI:10.1038/s41467-018-03281-1. [12] Trible W, Olivos-Cisneros L, Mckenzie SK, et al. orco mutagenesis causes loss of antennal lobe glomeruli and impaired social behavior in ants[J]. Cell, 2017, 170(4):727-735.e10. DOI:10.1016/j.cell.2017.07.001. [13] Hamilton JA, Wada-Katsumata A, Schal C. Role of cuticular hydrocarbons in german cockroach (Blattodea:Ectobiidae) aggregation behavior[J]. Environ Entomol, 2019, 48(3):546-553. DOI:10.1093/ee/nvz044. [14] Mullins DE, Cochran DG. Nitrogen metabolism in the American cockroach:an examination of whole body and fat body regulation of cations in response to nitrogen balance[J]. J Exp Biol, 1974, 61(3):557-570. DOI:10.1242/jeb.61.3.557. [15] Mullins DE, Cochran DG. Nitrogen metabolism in the American cockroach-I. An examination of positive nitrogen balance with respect to uric acid stores[J]. Comp Biochem Physiol A:Physiol, 1975, 50(3):489-500. DOI:10.1016/0300-9629(75)90306-0. [16] Mullins DE, Cochran DG. Nitrogen excretion in cockroaches:uric acid is not a major product[J]. Science, 1972, 177(4050):699-701. DOI:10.1126/science.177.4050.699. [17] López-Sánchez MJ, Neef A, Peretó J, et al. Evolutionary convergence and nitrogen metabolism in Blattabacterium strain Bge, primary endosymbiont of the cockroach Blattella germanica[J]. PLoS Genet, 2009, 5(11):e1000721. DOI:10.1371/journal.pgen.1000721. [18] Sabree ZL, Kambhampati S, Moran NA. Nitrogen recycling and nutritional provisioning by Blattabacterium, the cockroach endosymbiont[J]. Proc Natl Acad Sci USA, 2009, 106(46):19521-19526. DOI:10.1073/pnas.0907504106. [19] Ffrench-Constant RH. The molecular genetics of insecticide resistance[J]. Genetics, 2013, 194(4):807-815. DOI:10.1534/genetics.112.141895. [20] Davoodi S, Galenza A, Panteluk A, et al. The immune deficiency pathway regulates metabolic homeostasis in Drosophila[J]. J Immunol, 2019, 202(9):2747-2759. DOI:10.4049/jimmunol. 1801632. [21] Suzawa M, Muhammad NM, Joseph BS, et al. The toll signaling pathway targets the insulin-like peptide dilp6 to inhibit growth in Drosophila[J]. Cell Rep, 2019, 28(6):1439-1446.e5. DOI:10.1016/j.celrep.2019.07.015. [22] Myllymäki H, Rämet M. JAK/STAT pathway in Drosophila immunity[J]. Scand J Immunol, 2014, 79(6):377-385. DOI:10.1111/sji.12170. [23] Mirth C, Truman JW, Riddiford LM. The role of the prothoracic gland in determining critical weight for metamorphosis in Drosophila melanogaster[J]. Curr Biol, 2005, 15(20):1796-1807. DOI:10.1016/j.cub.2005.09.017. [24] Nijhout HF, Williams CM. Control of moulting and metamorphosis in the tobacco hornworm, Manduca sexta (L.):growth of the last-instar larva and the decision to pupate[J]. J Exp Biol, 1974, 61(2):481-491. DOI:10.1242/jeb.61.2.481. [25] Connat JL, Delbecque JP, Glitho I, et al. The onset of metamorphosis in Tenebrio molitor larvae (Insecta, Coleoptera) under grouped, isolated and starved conditions[J]. J Insect Physiol, 1991, 37(9):653-657, 659-662. DOI:10.1016/0022-1910(91)90042-X. [26] Kumar H, Panigrahi M, Chhotaray S, et al. Red flour beetle (Tribolium castaneum):from population genetics to functional genomics[J]. Vet World, 2018, 11(8):1043-1046. DOI:10.14202/vetworld.2018.1043-1046. [27] Li S, Yu XQ, Feng QL. Fat body biology in the last decade[J]. Annu Rev Entomol, 2019, 64:315-333. DOI:10.1146/annurev-ento-011118-112007. [28] Zhu SM, Liu FF, Zeng HC, et al. Insulin/IGF signaling and TORC1 promote vitellogenesis via inducing juvenile hormone biosynthesis in the American cockroach[J]. Development, 2020, 147(20):dev188805. DOI:10.1242/dev.188805. [29] Zhao Z, Li L, Cheng M, et al. Grainy head signaling regulates epithelium development and ecdysis in Blattella germanica[J]. Insect Sci, 2021, 28(2):485-494. DOI:10.1111/1744-7917.12780. [30] Li N, Zeng M, Xiao HL, et al. Alteration of insulin and nutrition signal gene expression or depletion of Met reduce both lifespan and reproduction in the German cockroach[J]. J Insect Physiol, 2019, 118:103934. DOI:10.1016/j.jinsphys.2019.103934. [31] Nojima S, Schal C, Webster FX, et al. Identification of the sex pheromone of the German cockroach, Blattella germanica[J]. Science, 2005, 307(5712):1104-1106. DOI:10.1126/science. 1107163. [32] Eliyahu D, Nojima S, Mori K, et al. Jail baits:how and why nymphs mimic adult females of the German cockroach, Blattella germanica[J]. Anim Behav, 2009, 78(5):1097-1105. DOI:10.1016/j.anbehav.2009.06.035. [33] Persoons CJ, Verwiel PEJ, Talman E, et al. Sex pheromone of the American cockroach, Periplaneta americana[J]. J Chem Ecol, 1979, 5(2):221-236. DOI:10.1007/BF00988237. [34] Schaller D. Antennal sensory system of Periplaneta americana L.:distribution and frequency of morphologic types of sensilla and their sex-specific changes during postembryonic development[J]. Cell Tissue Res, 1978, 191(1):121-139. DOI:10.1007/BF00223221. [35] Marshall DG, Jackson TA, Unelius CR, et al. Morganella morganii bacteria produces phenol as the sex pheromone of the New Zealand grass grub from tyrosine in the colleterial gland[J]. Sci Nat, 2016, 103(7/8):59. DOI:10.1007/s00114-016-1380-1. [36] Asano T, Seto Y, Hashimoto K, et al. Mini-review an insect-specific system for terrestrialization:laccase-mediated cuticle formation[J]. Insect Biochem Mol Biol, 2019, 108:61-70. DOI:10.1016/j.ibmb.2019.03.007. [37] Noh MY, Muthukrishnan S, Kramer KJ, et al. Cuticle formation and pigmentation in beetles[J]. Curr Opin Insect Sci, 2016, 17:1-9. DOI:10.1016/j.cois.2016.05.004. [38] Alibardi L. Appendage regeneration in anamniotes utilizes genes active during larval-metamorphic stages that have been lost or altered in amniotes:the case for studying lizard tail regeneration[J]. J Morphol, 2020, 281(11):1358-1381. DOI:10.1002/jmor.21251. [39] Wang J, Liu SJ, Heallen T, et al. The Hippo pathway in the heart:pivotal roles in development, disease, and regeneration[J]. Nat Rev Cardiol, 2018, 15(11):672-684. DOI:10.1038/s41569-018-0063-3. |