Chines Journal of Vector Biology and Control ›› 2015, Vol. 26 ›› Issue (4): 372-375.DOI: 10.11853/j.issn.1003.4692.2015.04.011

Previous Articles     Next Articles

Effects of multicollinearity among common temperature parameters on model in the case of mosquitoes

LAN Ce-jie, SHEN Yuan, YOU Ying-qi   

  1. Wuxi Center for Disease Control and Prevention, Wuxi 214023, Jiangsu Province, China
  • Received:2015-02-11 Online:2015-08-20 Published:2015-08-20
  • Supported by:

    Supported by the Health Systems Research Projects of Wuxi(No. Q201302)

以蚊虫为例浅析不同气温参数的多重共线性对建模的影响

兰策介, 沈元, 游颖琦   

  1. 无锡市疾病预防控制中心消毒与媒介生物防制科, 江苏无锡214023
  • 作者简介:兰策介,男,硕士,助理研究员,主要从事病媒生物研究工作,Email: lancejie@126.com
  • 基金资助:

    无锡市卫生系统科研项目(Q201302)

Abstract:

Objective Multicollinearity among common temperature parameters was analyzed to get suggestions for establishing the temperature driving model of insect population. Methods SPSS 13.0 was used to analyze pairwise correlation of daily average temperature (X1),maximum temperature (X2), lowest temperature (X3), 18:00 temperature (X4) and five days' average temperature (X5), which was collected from 2010 March to 2011 November. Meanwhile multicollinearity of temperature parameters was diagnosed based on mosquito population model droved by temperature. Results There was an extremely significant (P < 0.01) linear correlation between the various parameters. The coefficient of determination between X1 and X2 is the highest (Rc2=0.959); and it was the lowest between X4 and X5 (Rc2=0.811). Conclusion There were extremely significant correlation between any two temperature parameters discussed in this paper. These five temperature parameters had strong multicollinearity in mosquito temperature driving model. Multicollinearity weakened the model regression goodness. Simultaneous application of multiple temperature parameters should be avoided when introducing the temperature factor to establish temperature driving model.

Key words: Air temperature, Collinearity, Model, Mosquito

摘要:

目的 了解常用气温参数的多重共线性,为应用相关参数建立虫量的温度驱动消长模型提供参考。方法 应用SPSS 13.0软件分析无锡市2010年3月至2011年11月每天的平均气温(X1)、最高气温(X2)、最低气温(X3)、18:00时气温(X4)、5日均温(X5)5个参数之间的相关性,并以本地蚊虫为例经向后法诊断了气温参数在蚊密度消长模型中的多重共线性。结果 各参数之间呈直线相关,相关性均有统计学意义(P < 0.01)。其中X1与X2的相关性最高,校正决定系数(Rc2)=0.959;X4 与X5相关性最低,Rc2=0.811。在以气温参数为自变量建立蚊密度消长模型时,随着自变量个数的增加,多重共线性程度也增强,模型的复相关系数(R)升高,Rc2降低。结论 气温参数之间存在显著的自相关,在建模时存在较强的多重共线性,多重共线性实际上降低了回归方程的拟合度,在引入气温因子建立相关模型时应避免同时应用多个气温参数。

关键词: 气温, 共线性, 模型, 蚊虫

CLC Number: