Objective To investigate the spatial distribution characteristics and spatial aggregation at subdistrict scale of vector density during peak period in the main urban area of Hefei, Anhui Province, China, so as to provide a reference for optimization of vector control measures and prevention and control of vector-borne infectious diseases. Methods The surveillance data of vector density during the peak period in 2024 were collected for the main urban area of Hefei. The data were plotted in thematic maps. Ordinary Kriging interpolation and spatial autocorrelation were used to analyze the spatial distribution characteristics of vector density. Results The average densities of rodents, mosquitoes, flies, and cockroaches in the main urban area of Hefei were 0.91%, 3.50 mosquitoes/lamp·night, 4.54 flies/cage, and 0.05 cockroaches/trapping paper, respectively. The coefficients of determination (R2) for the interpolated densities of rodents, mosquitoes, flies, and cockroaches were 0.78, 0.86, 0.71, and 0.66, respectively. The corresponding root mean square errors were 0.24, 0.28, 0.28, and 0.53, respectively. The densities obtained by ordinary Kriging interpolation were 0.03%-3.22%, 0.04-13.80 mosquitoes/lamp·night, 0.33-11.05 flies/cage, and 0.00-0.14 cockroaches/trapping paper. The ranges of interpolated densities were narrower than those of the actual surveillance values, but the distributions were generally consistent. The spatial distributions of densities of rodents, mosquitoes, flies, and cockroaches showed positive correlations, with Moran's I indexes of 0.51, 0.35, 0.21, and 0.42, respectively (all Z>0, P<0.01). The 16 subdistricts covered by the "high-high" aggregation areas of vector density were mainly distributed in the northeastern region, and the 24 subdistricts covered by the "low-low" aggregation areas formed a contiguous zone spanning the northern, central, and southeastern regions. Conclusions Vector density during peak period was relatively low in the main urban area of Hefei. The densities of different vectors showed uneven spatial distributions, and an overall spatial pattern of high in the east and north and low in the west and south. Spatial aggregation was observed at the subdistricts scale. Sustainable and differentiated control measures should be developed, with a focus on key areas at risk for vector-borne diseases.
ZHANG Lei, XU Hong-ping, WANG Wen-jun, WANG Wen-jing, ZHANG Yan-jie, CHENG Ting-ting, WANG Qian
. Analysis of spatial distribution characteristics of vector density during peak period in the main urban area of Hefei, Anhui Province, China, 2024[J]. Chinese Journal of Vector Biology and Control, 2025
, 36(2)
: 158
-164
.
DOI: 10.11853/j.issn.1003.8280.2025.02.004
[1] Liu QY. State-of-art analysis and perspectives on vector surveillance and control in China[J]. Chin J Vector Biol Control,2015,26(2):109-113,126. DOI:10.11853/j.issn.1003.4692.2015.02.001.(in Chinese) 刘起勇. 我国病媒生物监测与控制现状分析及展望[J]. 中国媒介生物学及控制杂志,2015,26(2):109-113,126. DOI:10.11853/j.issn.1003.4692.2015.02.001.
[2] Liu QY,Xu WB,Lu S,et al. Landscape of emerging and re-emerging infectious diseases in China:Impact of ecology,climate,and behavior[J]. Front Med,2018,12(1):3-22. DOI :10.1007/s11684-017-0605-9.
[3] Liu QY. Research progress on the vector surveillance and early-warning[J]. Dis Surveill,2018,33(2):123-128. DOI:10.3784/j.issn.1003-9961.2018.02.005.(in Chinese) 刘起勇. 病媒生物监测预警研究进展[J]. 疾病监测,2018,33(2):123-128. DOI:10.3784/j.issn.1003-9961.2018.02.005.
[4] Zhou YB,Liu HX,Leng PE,et al. Analysis of the spatial distribution of Aedesalbopictus in an urban area of Shanghai,China[J]. Parasit Vectors,2021,14(1):501. DOI:10.1186/s13071-021-05022-8.
[5] Luo MY,Wang JN,Wu YY,et al. Spatial distribution characteristics and risk analysis of rodent density in Zhejiang Province,2021[J]. Chin J Vector Biol Control,2022,33(4):475-479. DOI:10.11853/j.issn.1003.8280.2022.04.006.(in Chinese) 罗明宇,王金娜,吴瑜燕,等. 浙江省2021年鼠类密度空间分布特征与风险分析[J]. 中国媒介生物学及控制杂志,2022,33(4):475-479. DOI:10.11853/j.issn.1003.8280.2022.04.006.
[6] Jiang Z,Zheng HY,Tian YC,et al. Spatial difference of fly density in the urban areas of Chengdu[J]. Chin J Hyg Insect Equip,2018,24(2):186-187,191. DOI:10.19821/j.1671-2781.2018.02.022.(in Chinese) 蒋峥,郑鸿源,田玉成,等. 成都市城区蝇密度的空间差异[J]. 中华卫生杀虫药械,2018,24(2):186-187,191. DOI:10.19821/j.1671-2781.2018.02.022.
[7] Wang WJ,Xu HP,Yang FT,et al. Ecological monitoring of main vectors in Hefei in 2022[J]. Chin J Hyg Insect Equip,2023,29(4):299-303. DOI:10.19821/j.1671-2781.2023.04.003.(in Chinese) 王文君,徐红平,仰凤桃,等. 2022年合肥市常见病媒生物生态学监测分析[J]. 中华卫生杀虫药械,2023,29(4):299-303. DOI:10.19821/j.1671-2781.2023.04.003.
[8] Wang SP,Xing A,Hu YL,et al. Prediction method of spatial distribution of heavy metals in agricultural soil around a metal smelter in Inner Mongolia[J]. Chin J Soil Sci,2024,55(3):830-839. DOI:10.19336/j.cnki.trtb.2023060102.(in Chinese) 王水平,兴安,胡有林,等. 内蒙古某金属冶炼厂周边农田土壤重金属空间分布预测方法研究[J]. 土壤通报,2024,55(3):830-839. DOI:10.19336/j.cnki.trtb.2023060102.
[9] Liu YL,Lin ST,Song DF,et al. Monitoring and early warning of Monochamusalternatus in Zhanggong District based on GIS and geostatistics[J]. China Plant Protect,2020,40(1):40-47. DOI:10.3969/j.issn.1672-6820.2020.01.008.(in Chinese) 刘郁林,林世滔,宋墩福,等. 基于GIS和地统计的章贡区松褐天牛的监测预警研究[J]. 中国植保导刊,2020,40(1):40-47. DOI:10.3969/j.issn.1672-6820.2020.01.008.
[10] Li C,Tang DS,Jia JB. Estimation of Pinusmassoniana index based on geostatistical spatial analysis[J]. For Resour Manage,2023(3):128-133. DOI:10.13466/j.cnki.lyzygl.2023.03.017.(in Chinese) 李成,唐代生,贾剑波. 基于地统计分析的马尾松立地指数预估[J]. 林业资源管理,2023(3):128-133. DOI:10.13466/j.cnki.lyzygl.2023.03.017.
[11] Wang SB,Wang Y. Comparative research on typical spatial interpolation methods for cancer data in small regions[J]. Geogr Res,2021,40(7):2102-2118. DOI:10.11821/dlyj020200680.(in Chinese) 王士博,王勇. 小区域癌症数据典型空间插值方法比较研究[J]. 地理研究,2021,40(7):2102-2118. DOI:10.11821/dlyj020200680.
[12] Peng ZR,Wei J,Chen BY,et al. Spatial analysis on birth defects in Guangxi based on geographic information system[J]. Dis Surveill,2022,37(2):262-268. DOI:10.3784/jbjc.202104080184.(in Chinese) 彭振仁,韦洁,陈碧艳,等. 基于地理信息系统的广西壮族自治区出生缺陷空间分析[J]. 疾病监测,2022,37(2):262-268. DOI:10.3784/jbjc.202104080184.
[13] Yin Z,He XY,Li QF,et al. Spatial-temporal analysis of smear-positive pulmonary tuberculosis in Xinjiang Uygur Autonomous Region from 2011 to 2015[J]. Chin J Antituberc,2020,42(6):597-603. DOI:10.3969/j.issn.1000-6621.2020.06.011.(in Chinese) 尹哲,贺湘焱,李奇风,等. 2011-2015年新疆维吾尔自治区涂阳肺结核时空格局分析[J]. 中国防痨杂志,2020,42(6):597-603. DOI:10.3969/j.issn.1000-6621.2020.06.011.
[14] Ge Y,Wang MX,Sun XW,et al. Spatial variations of atomspheric PM2.5 concentration in autumn and winter in Yangtze River Delta[J]. Environ Chem,2016,35(8):1698-1706. DOI:10.7524/j.issn.0254-6108.2016.08.2016011104.(in Chinese) 葛跃,王明新,孙向武,等. 长三角地区秋冬季大气PM2.5含量空间变异特征[J]. 环境化学,2016,35(8):1698-1706. DOI:10.7524/j.issn.0254-6108.2016.08.2016011104.
[15] Song NJ,Xie Y,Ding S,et al. Analysis of spatial autocorrelation of hemorrhagic fever with renal syndrome in Jiangxi Province from 2013 to 2018[J]. Chin J Dis Control Prev,2020,24(8):876-880. DOI:10.16462/j.cnki.zhjbkz.2020.08.003.(in Chinese) 宋宁娟,谢昀,丁晟,等. 江西省2013-2018年肾综合征出血热空间自相关分析[J]. 中华疾病控制杂志,2020,24(8):876-880. DOI:10.16462/j.cnki.zhjbkz.2020.08.003.