Vector Surveillance

Differential analysis of mosquito species composition and density fluctuation in Zhejiang Province, China, 2021

Expand
  • 1. School of Public Health, Hangzhou Medical College, Hangzhou, Zhejiang 310000, China;
    2. Department of Communicable Disease Control and Prevention, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang 310051, China

Received date: 2024-05-23

  Online published: 2025-03-05

Abstract

Objective To investigate the differences in mosquito species composition and density fluctuation between different terrains and habitats in Zhejiang Province, China from April to November 2021, so as to provide a scientific reference for mosquito control and mosquito-borne disease prevention. Methods From April to November 2021, five types of habitats were selected in counties/cities/districts of Zhejiang Province, including residential areas, parks, hospitals, rural households, and livestock sheds, and mosquitoes were monitored once at the beginning of each month using the light trap method. Excel 2021 software was used to summarize the mosquito population and density data, and SPSS 15.0 software was used for statistical analysis. A descriptive analysis was employed to investigate the difference in mosquito density fluctuation. The Chi-square test was used for the difference in mosquito species composition between different terrains and between habitats. The rank-sum test was used for the difference in mosquito density. Results In 2021, 103 669 female adult mosquitoes were captured in Zhejiang Province, and Culex tritaeniorhynchus was the dominant mosquito species, accounting for 53.40%. There was a significant difference in the species composition of mosquito between different terrains (χ2=40 563.669, P<0.001) and between habitats (χ2=60 457.931, P<0.001). Apart from Aedes albopictus, other species of mosquitoes were numerous in livestock sheds. The mosquito density was 8.48 mosquitoes/light·night in Zhejiang Province in 2021, and the mosquito density fluctuation curve showed a single-peak from April to November, reaching a peak in June, which was 25.48 mosquitoes/light·night. Conclusions There exist significant differences in mosquito species composition and density fluctuation trend between different terrains and between habitats in Zhejiang Province. Counties/cities/districts in Zhejiang Province should develop different mosquito surveillance programs and preventive and control measures based on the distribution and density fluctuation of mosquito populations in their respective region.

Cite this article

ZHANG Wen-rong, LIU Qin-mei, NI Jing, WANG Jin-na, LI Tian-qi, LUO Ming-yu, SUN Ji-min, GONG Zhen-yu . Differential analysis of mosquito species composition and density fluctuation in Zhejiang Province, China, 2021[J]. Chinese Journal of Vector Biology and Control, 2025 , 36(1) : 28 -33 . DOI: 10.11853/j.issn.1003.8280.2025.01.006

References

[1] Gong ZY, Liu QY, Hou J, et al. Integrated monitoring of mosquitoes and mosquito-borne diseases in Zhejiang province[J]. Chin J Vector Biol Control, 2010, 21(3):184-187. (in Chinese) 龚震宇, 刘起勇, 侯娟, 等. 浙江省蚊虫及蚊媒传染病综合监测研究[J]. 中国媒介生物学及控制杂志, 2010, 21(3):184-187.
[2] Li CM, Tang JX, Cai YS, et al. Population structure and seasonal dynamics of mosquitoes in different types of residential areas[J]. Chin J Schistosomiasis Control, 2017, 29(6):720-724, 787. DOI:10.16250/j.32.1374.2017165.(in Chinese) 李传明, 唐建霞, 蔡扬生, 等. 城市不同类型住宅区蚊虫种群结构及季节消长分析[J]. 中国血吸虫病防治杂志, 2017, 29(6):720-724, 787. DOI:10.16250/j.32.1374.2017165.
[3] Auerswald H, Maquart PO, Chevalier V, et al. Mosquito vector competence for Japanese encephalitis virus[J]. Viruses, 2021, 13(6):1154. DOI:10.3390/v13061154.
[4] Zheng XM. Zhejiang physical geography field practice tutorial[M]. 2nd ed. Beijing:Science Press, 2021:1-10. (in Chinese) 郑祥民. 浙江自然地理学野外实习教程[M]. 2版. 北京:科学出版社, 2021:1-10.
[5] Zeng JQ, Li CH, Zhang H, et al. The current status of outbreaks of mosquito-borne viral diseases and advances in the study of pathogen detection techniques[J]. J Parasit Biol, 2021, 16(6):728-730. DOI:10.13350/j.cjpb.210623.(in Chinese) 曾嘉庆, 李成辉, 张赫, 等. 蚊媒病毒病流行现状及病原学检测技术研究进展[J]. 中国病原生物学杂志, 2021, 16(6):728-730. DOI:10.13350/j.cjpb.210623.
[6] Van den Eynde C, Sohier C, Matthijs S, et al. Japanese encephalitis virus interaction with mosquitoes:A review of vector competence, vector capacity and mosquito immunity[J]. Pathogens, 2022, 11(3):317. DOI:10.3390/pathogens11030317.
[7] Wu LZ, Zhang YJ, Li XQ. Analysis of the monitoring results of mosquitoes carrying encephalitis B virus in Xianju County, Zhejiang Province, China[J]. Mod Practical Med, 2017, 29(6):780-781. DOI:10.3969/j.issn.1671-0800.2017.06.043. (in Chinese) 吴灵芝, 张意坚, 李笑琴. 浙江省仙居县蚊虫携带乙型脑炎病毒的监测结果分析[J]. 现代实用医学, 2017, 29(6):780-781. DOI:10.3969/j.issn.1671-0800.2017.06.043.
[8] Aryaprema VS, Steck MR, Peper ST, et al. A systematic review of published literature on mosquito control action thresholds across the world[J]. PLoS Negl Trop Dis, 2023, 17(3):e0011173. DOI:10.1371/journal.pntd.0011173.
[9] Yan J, He LH. Advances in research on impacts of geographical landscape factors on mosquito density[J]. Chin J Vector Biol Control, 2017, 28(2):193-196. DOI:10.11853/j.issn.1003.8280.2017.02.028.(in Chinese) 严杰, 何隆华. 地理景观因素对蚊虫密度影响研究进展[J]. 中国媒介生物学及控制杂志, 2017, 28(2):193-196. DOI:10.11853/j.issn.1003.8280.2017.02.028.
[10] Huang QZ. Simplified atlas of pest control[M]. Beijing:Science Press, 2018:33-35. (in Chinese) 黄清臻. 有害生物防制简明图谱[M]. 北京:科学出版社, 2018:33-35.
[11] Li CY, Chen XG. Research and application progress of Aedes albopictus monitoring and control techniques[J]. China Trop Med, 2018, 18(7):732-736, 739. DOI:10.13604/j.cnki.46-1064/r.2018.07.26.(in Chinese) 李晨颖, 陈晓光. 媒介白纹伊蚊监测和控制技术研究及应用进展[J]. 中国热带医学, 2018, 18(7):732-736, 739. DOI:10.13604/j.cnki.46-1064/r.2018.07.26.
[12] Liu QM, Hou J, Wei LY, et al. Surveillance of insecticide resistance and density of the dengue vector Aedes albopictus in four prefectures of Zhejiang Province, China, 2018[J]. Chin J Vector Biol Control, 2020, 31(3):263-267. DOI:10.11853/j.issn.1003.8280.2020.03.004.(in Chinese) 刘钦梅, 侯娟, 韦凌娅, 等. 浙江省4个地区2018年登革热媒介白纹伊蚊密度及抗药性监测[J]. 中国媒介生物学及控制杂志, 2020, 31(3):263-267. DOI:10.11853/j.issn.1003.8280.2020.03.004.
[13] Paupy C, Delatte H, Bagny L, et al. Aedes albopictus, an arbovirus vector:From the darkness to the light[J]. Microbes Infect, 2009, 11(14/15):1177-1185. DOI:10.1016/j.micinf.2009.05.005.
[14] Zhou MH, Chu HL. Handbook for classification and identification of main vectors[M]. Suzhou:Suzhou University Press, 2019:13-26. (in Chinese) 周明浩, 褚宏亮. 常见病媒生物分类鉴定手册[M]. 苏州:苏州大学出版社, 2019:13-26.
[15] Zhu CT, Liu ZG, Jing X, et al. Study on the blood feeding habits of common mosquitoes in Shandong Province[J]Chin J Hyg Insectic Equip, 2006, 12(3):230-231. (in Chinese) 朱传泰, 刘作功, 景晓, 等.山东地区常见蚊种嗜血习性的研究[J].中华卫生杀虫药械, 2006, 12(3):230-231.
[16] Wu YY, Ling F, Gong ZY. Surveillance for mosquito density and species in Zhejiang, 2011-2013[J]. Dis Surveill, 2015, 30(6):497-500. DOI:10.3784/j.issn.1003-9961.2015.06.016.(in Chinese) 吴瑜燕, 凌锋, 龚震宇. 2011-2013年浙江省用灯诱法的蚊密度及变化趋势分析[J]. 疾病监测, 2015, 30(6):497-500. DOI:10.3784/j.issn.1003-9961.2015.06.016.
[17] Swan T, Russell TL, Staunton KM, et al. A literature review of dispersal pathways of Aedes albopictus across different spatial scales:Implications for vector surveillance[J]. Parasite Vector, 2022, 15(1):303. DOI:10.1186/s13071-022-05413-5.
[18] Liu QY. Sustainable vector management strategy and practice:Achievements in vector-borne diseases control in new China in the past seventy years[J]. Chin J Vector Biol Control, 2019, 30(4):361-366. DOI:10.11853/j.issn.1003.8280.2019.04.001.(in Chinese) 刘起勇. 媒介生物可持续控制策略和实践:新中国70年媒介生物传染病控制成就[J]. 中国媒介生物学及控制杂志, 2019, 30(4):361-366. DOI:10.11853/j.issn.1003.8280.2019.04.001.
[19] Liu QY, Meng FX, Lu L, et al. Exploring the road to sustainable vector control in China[J]. Chin J Vector Biol Control, 2006, 17(4):261-264. DOI:10.3969/j.issn.1003-4692.2006.04.001.(in Chinese) 刘起勇, 孟凤霞, 鲁亮, 等. 探索中国病媒生物可持续控制之路[J]. 中国媒介生物学及控制杂志, 2006, 17(4):261-264. DOI:10.3969/j.issn.1003-4692.2006.04.001.
[20] Chen EF, Guo S, Huang WZ, et al. The mosquito control and evaluation system of "mosquito-free village" construction in rural areas[J]. Prev Med, 2019, 31(3):217-220. DOI:10.19485/j.cnki.issn2096-5087.2019.03.001.(in Chinese) 陈恩富, 郭颂, 黄文忠, 等. 农村蚊虫防制和“无蚊村”建设评价指标体系[J]. 预防医学, 2019, 31(3):217-220. DOI:10.19485/j.cnki.issn2096-5087.2019.03.001.
[21] Ni J, Wang JN, Fang CF, et al. A review of the latest control strategies for mosquito-borne diseases[J]. China CDC Wkly, 2024, 6(33):852-856. DOI:10.46234/ccdcw2024.183.
[22] Lin GH, Yu JL. Wenzhou Dongtou District, Zhejiang, pilot "mosquito-free island" to create a "healthy countryside"[J]. Popul Health, 2019(7):73. (in Chinese) 林国辉, 余建林. 浙江温州洞头区试点“无蚊岛”创建 建设“健康乡村”[J]. 人口与健康, 2019(7):73.
Outlines

/