Experimental Study

Metabolism of two insecticide effective ingredients in Blattella germanica and Periplaneta americana

Expand
  • Zhongshan Lanju Daily Chemical Industrial Co., Ltd., Zhongshan, Guangdong 528400, China

Received date: 2023-12-20

  Online published: 2024-12-20

Abstract

Objective To investigate the differences in feeding amount and intestinal metabolism of Blattella germanica and Periplaneta americana on 2.5% imidacloprid and 0.5% dinotefuran cockroach baits, so as to provide a theoretical basis for the difference research on lethal speed of these two effective ingredients in B. germanica and P. americana. Methods The feeding amounts of B. germanica and P. americana on baits was measured, and intestinal dissection and fecal collection were conducted. Liquid chromatography was used to analyze the content of two effective constituents in the intestinal tract and feces, and the midgut metabolic rate and digestive tract metabolic rate were calculated. The differences in the data were compared by the independent samples t test. Results The feeding amounts of B. germanica and P. americana on the two baits was significantly lower than that on the normal baits [ In B. germanica, dinotefuran: (7.56±0.79) mg/cockroach, t=-62.310, P<0.001; imidacloprid: (0.66±0.29) mg/cockroach, t=-25.873, P<0.001. In P. americana, dinotefuran: (9.53±0.58) mg/cockroach, t=-34.067, P<0.001; imidacloprid: (2.72±0.28) mg/cockroach, t=-27.191, P<0.001]. The digestive tract metabolic rate and midgut metabolic rate of 2.5% imidacloprid bait were 96.17% and 81.04% in B. germanica, and 92.71% and 97.01% in P. americana, respectively, with no significant difference between the two species (F=7.290, P=0.054; F=5.436, P=0.080). The digestive tract and midgut metabolic rates of 0.5% dinotefuran bait were 54.69% and 78.82% in B. germanica, while dinotefuran was not detected in the anterior, middle, and posterior intestines and feces of P. americana. Conclusions Both B. germanica and P. americana exhibit significant resistance to imidacloprid and dinotefuran baits, which may be one of the reasons for the difference in lethal speed of the two baits and the main reason for the poor lethal effect of dinotefuran on P. americana. Digestive tract metabolism is not the reason for the difference in lethal speed of the two baits.

Cite this article

TANG Li-ping, LAI Yun-yan, LIANG Ze-quan, ZHU Jian . Metabolism of two insecticide effective ingredients in Blattella germanica and Periplaneta americana[J]. Chinese Journal of Vector Biology and Control, 2024 , 35(6) : 648 -651 . DOI: 10.11853/j.issn.1003.8280.2024.06.004

References

[1] Li J. The insectcide target subunit identification of insect nicotinic acetylcholine receptor[D]. Nanjing:Nanjing Agricultural University, 2013. (in Chinese) 李健. 昆虫烟碱型乙酰胆碱受体的杀虫剂靶标亚基鉴定[D]. 南京:南京农业大学, 2013.
[2] Lu HY. The mode of action of a nitroconjugated neonicotinoid and the study of its functional target[D]. Nanjing:Nanjing Agricultural University, 2012. DOI:10.7666/d.Y2361568.(in Chinese) 陆海燕. 顺式硝基新烟碱类化合物作用机制研究及靶标的验证[D]. 南京:南京农业大学, 2012. DOI:10.7666/d.Y2361568.
[3] Yao XM. The pharmacological characteristics of insect nicotinic acetylcholine receptor β subunits and set-up of a new expression system[D]. Nanjing:Nanjing Agricultural University, 2012. DOI:10.7666/d.Y2360689.(in Chinese) 姚香梅. 昆虫乙酰胆碱受体β亚基毒理学特性研究与新外源表达平台的建立[D]. 南京:南京农业大学, 2012. DOI:10.7666/d.Y2360689.
[4] Zhang WW, Huang QC, Li Z. Identification of high affinity binding sites to dinotefuran in the neural cord of Periplaneta americana [J]. World Pesticides, 2006, 28(5):17-20, 36. DOI:10.3969/j.issn.1009-6485.2006.05.003.(in Chinese) 张文文, 黄青春, 李忠. 美洲大蠊神经索中与呋虫胺高亲和性结合位点的鉴别[J]. 世界农药, 2006, 28(5):17-20, 36. DOI:10.3969/j.issn.1009-6485.2006.05.003.
[5] Tang LP, Zhu J, Liao GD, et al. Study on the lethal rate of six active ingredients to Blattella germanica and Periplaneta americana[J]. Chin J Vector Biol Control, 2022, 33(3):340-345. DOI:10.11853/j.issn.1003.8280.2022.03.005.(in Chinese) 唐丽萍, 朱剑, 廖国栋, 等. 6种有效成分杀蟑饵剂对德国小蠊和美洲大蠊致死速度的研究[J]. 中国媒介生物学及控制杂志, 2022, 33(3):340-345. DOI:10.11853/j.issn.1003.8280.2022.03.005.
[6] Chen HN, Zhou MH, Zhang AJ, et al. Efficacy of dinotefuran against Blattella germanica[J]. Chin J Hyg Insect Equip, 2017, 23(6):520-521, 524. DOI:10.19821/j.1671-2781.2017.06.007.(in Chinese) 陈红娜, 周明浩, 张爱军, 等. 呋虫胺对德国小蠊的杀灭效果研究[J]. 中华卫生杀虫药械, 2017, 23(6):520-521, 524. DOI:10.19821/j.1671-2781.2017.06.007.
[7] Huang ZD. Diversity and main biological functions of gut bacteria in Blattella germanica[D]. Jinan:Shandong First Medical University, 2019. DOI:10.27353/d.cnki.gtsyc.2019.000244.(in Chinese) 黄振东. 德国小蠊肠道细菌的多样性及其主要生物学功能研究[D]. 济南:山东第一医科大学, 2019. DOI:10.27353/d.cnki.gtsyc.2019.000244.
[8] Liu H. Study on the symbiotic bacteria population change and insecticide resistance of Blattella germannica[D]. Jinan:Shandong Normal University, 2013. (in Chinese) 刘浩. 德国小蠊共生菌种群变化与抗药性的关系[D]. 济南:山东师范大学, 2013.
[9] Wang YM, Yu HB, Bao JY, et al. Detection and analysis of cultivated bacteria carried by cockroach in laboratory[J]. Chin J Health Lab Technol, 2021, 31(17):2053-2056. (in Chinese) 王一梅, 余汉斌, 包继永, 等. 实验室养殖蜚蠊携带可培养菌检测分析[J]. 中国卫生检验杂志, 2021, 31(17):2053-2056.
[10] Shen HF, Zhang T, Wang GH, et al. The effects of feeding tetracycline and ampicillin on the nutritional effects and three detoxification enzyme activities of male Blattella germanica adults[J]. Light Textile Ind Fujian, 2023(11):9-14. DOI:10.3969/j.issn.1007-550X.2023.11.001.(in Chinese) 沈惠芳, 张婷, 王国红, 等. 饲喂四环素和氨苄西林对德国小蠊雄成虫营养效应和3种解毒酶活性的影响[J]. 福建轻纺, 2023(11):9-14. DOI:10.3969/j.issn.1007-550X.2023.11.001.
[11] Huang YH. A study on the anti-cypermethrin related proteins and gut microbiota of Blattella germanica[D]. Jinan:Shandong Normal University, 2012. (in Chinese) 黄艳红. 德国小蠊抗高效氯氰菊酯相关蛋白及肠道菌群的研究[D]. 济南:山东师范大学, 2012.
[12] Wang YJ. The diversity research of Periplaneta americana intestinal endogenous actinomyces[D]. Guangzhou:Guangdong Pharmaceutical University, 2016. (in Chinese) 王影姣. 美洲大蠊肠道内生放线菌的多样性研究[D]. 广州:广东药科大学, 2016.
[13] Zhang L. Mechanism of metabolic resistance in vector insects[J]. J Med Pest Control, 2002, 18(12):699-701. (in Chinese) 张丽. 病媒昆虫代谢抗性机理[J]. 医学动物防制, 2002, 18(12):699-701.
[14] Bao Y, Liu ZG, Jiang LZ. Morphology of the digestive system in Periplaneta americana[J]. Acta Parasitol Med Entomol Sin, 2007, 14(3):162-164. DOI:10.3969/j.issn.1005-0507.2007.03.008.(in Chinese) 包莹, 刘志刚, 蒋灵芝. 美洲大蠊消化系统形态学观察[J]. 寄生虫与医学昆虫学报, 2007, 14(3):162-164. DOI:10.3969/j.issn.1005-0507.2007.03.008.
[15] Liu XJ, Wang YC, Zhao Y, et al. Neurophysiological effects of imidacloprid and dimehypo on the central nervous system in the American cockroach, Periplaneta armericana[J]. Acta Entomol Sin, 1995, 38(2):129-133. (in Chinese) 刘贤进, 王荫长, 赵勇, 等. 吡虫啉、杀虫双对美洲蜚蠊中枢神经的电生理影响[J]. 昆虫学报, 1995, 38(2):129-133.
[16] Niu JG. Toxicological mechanism of the effect of insect feeding and excretion of flonicamid[D] Nanjing:Nanjing Agricultural University, 2019. DOI:10.27244/d.cnki.gnjnu.2019.001658.(in Chinese) 钮建国. 氟啶虫酰胺对昆虫取食与排泄影响的毒理机制[D]. 南京:南京农业大学, 2019. DOI:10.27244/d.cnki.gnjnu.2019.001658.
[17] Li HH. Effects of neonicotinoid insectcides on honey bee larva and its mechanism[D] Nanning:Guangxi University, 2021. (in Chinese) 李红红. 几种新烟碱类杀虫剂对蜜蜂工蜂幼虫发育的影响及机制研究[D]. 南宁:广西大学, 2021.
Outlines

/