Experimental Study

The recombinant protein, Hq001, in Haemaphysalis qinghaiensis: Structure prediction and prokaryotic expression

Expand
  • 1. Baotou Medical College, Inner Mongolia University of Science & Technology, Baotou, Inner Mongolia 014000, China;
    2. Laboratory of Molecular Medicine, Ordos Central Hospital, Ordos, Inner Mongolia 017000, China;
    3. Department of Medical Laboratory, The First Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science & Technology, Baotou, Inner Mongolia 014000, China;
    4. Ordos School of Clinical Medicine, Inner Mongolia Medical University, Ordos, Inner Mongolia 017000, China;
    5. Third Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, Henan 450003, China

Received date: 2023-11-02

  Online published: 2024-05-09

Abstract

Objective To construct the three-dimensional theoretical model of Hq001 protein encoded by a novel gene, Hq001, cloned from a salivary gland cDNA library of Haemaphysalis qinghaiensis, and to evaluate its relationship with tick-derived Kunitz-type anticoagulant proteins.Methods The recombinant plasmid pET-30a-Hq001 was constructed and transformed into Escherichia coli BL21 (DE3) for the expression of Hq001 protein. AlphaFold v2 software was used to predict the tertiary structure of Hq001 amino acid sequence with the signal peptide removed, to obtain a three-dimensional (3D) theoretical model. The 3D theoretical model was optimized through molecular dynamics simulation using the open-source software GROMACS v2023 and evaluated using ANOLEA and MolProbity.Results The recombinant plasmid pET30a-Hq001 was expressed as inclusion bodies in E. coli BL21. Sequence alignment and structure modeling results showed that Hq001 protein had typical double Kunitz-BPTI domains, with a similar sequence and structure to four Kunitz-BPTI-type anticoagulant proteins, such as Bikunin, Boophilin, Ornithodorin, and Ixolaris. Following 1 ns molecular dynamics (MD) simulation optimization, the root mean square deviation (RMSD) of the theoretical model attained stability at approximately 3 Å, indicative of convergence to a steady-state conformational ensemble. Concurrently, the most energetically favorable structure within this ensemble, exhibiting a total energy of -207 166 400 kJ/mol, was identified and designated as the final model.Conclusion Hq001 protein has conserved Kunitz-BPTI domains that resemble Boophilin from Rhipicephalus microplus in sequence and structure, indicating that Hq001 protein may have similar structure and function to some known Kunitz-type serine protease inhibitors.

Cite this article

LIU Yue-qing, MA Lin-yuan, MA Jing, CHEN Kai-ting, CAO Mei-na, WANG Xue-wei, WANG Peng, GAO Jin-liang . The recombinant protein, Hq001, in Haemaphysalis qinghaiensis: Structure prediction and prokaryotic expression[J]. Chinese Journal of Vector Biology and Control, 2024 , 35(2) : 138 -144 . DOI: 10.11853/j.issn.1003.8280.2024.02.002

References

[1] Gui Z,Wu L,Cai H,et al.Genetic diversity analysis of Dermacentor nuttalli within Inner Mongolia,China[J].Parasit Vectors,2021,14(1):131-143.DOI:10.1186/s13071-021-04625-5.
[2] Martins LA,Kotál J,Bensaoud C,et al.Small protease inhibitors in tick saliva and salivary glands and their role in tick-host-pathogen interactions[J].Biochim Biophys Acta Proteins Proteom,2020,1868(2):140336.DOI:10.1016/j.bbapap.2019.140336.
[3] Chen Z,Liu JZ.Recent progress in tick taxonomy and a global list of tick species[J].Chin J Appl Entomol,2020,57(5):1009-1045.DOI:10.7679/j.issn.2095-1353.2020.104.(in Chinese) 陈泽,刘敬泽.蜱分类学研究进展[J].应用昆虫学报,2020,57(5):1009-1045.DOI:10.7679/j.issn.2095-1353.2020.104.
[4] Ali A,Zeb I,Alouffi A,et al.Host immune responses to salivary components:A critical facet of tick-host interactions[J].Front Cell Infect Microbiol,2022,12:809052.DOI:10.3389/fcimb.2022.809052.
[5] Reck J,Webster A,Dall'Agnol B,et al.Transcriptomic analysis of salivary glands of Ornithodoros brasiliensis Aragão,1923,the agent of a neotropical tick-toxicosis syndrome in humans[J].Front Physiol,2021,12:725635.DOI:10.3389/fphys.2021.725635.
[6] Camillo LDMB,Ferreira GC,Duran AFA,et al.Structural modelling and thermostability of a serine protease inhibitor belonging to the Kunitz-BPTI family from the Rhipicephalus microplus tick[J].Biochimie,2021,181:226-233.DOI:10.1016/j.biochi.2020.12.014.
[7] Jmel MA,Voet H,Araújo RN,et al.Tick salivary Kunitz-type inhibitors:Targeting host hemostasis and immunity to mediate successful blood feeding[J].Int J Mol Sci,2023,24(2):1556.DOI:10.3390/ijms24021556.
[8] Xu ZM,Yan YJ,Zhang HS,et al.A serpin from the tick Rhipicephalus haemaphysaloides:Involvement in vitellogenesis[J].Vet Parasitol,2020,279:109064.DOI:10.1016/j.vetpar.2020.109064.
[9] Chang PP,Li XY,Lin JY,et al.scFv-oligopeptide chaperoning system-assisted on-column refolding and purification of human muscle creatine kinase from inclusion bodies[J].J Chromatogr B,2022,1209:123410.DOI:10.1016/j.jchromb.2022.123410.
[10] Duvaud S,Gabella C,Lisacek F,et al.Expasy,the Swiss bioinformatics resource portal,as designed by its users[J].Nucleic Acids Res,2021,49(W1):W216-W227.DOI:10.1093/nar/gkab225.
[11] Armenteros JJA,Tsirigos KD,Sønderby CK,et al.SignalP 5.0 improves signal peptide predictions using deep neural networks[J].Nat Biotechnol,2019,37(4):420-423.DOI:10.1038/s41587-019-0036-z.
[12] Bienert S,Waterhouse A,De Beer TAP,et al.The SWISS-MODEL Repository-new features and functionality[J].Nucleic Acids Res,2017,45(D1):D313-D319.DOI:10.1093/nar/gkw1132.
[13] Robert X,Gouet P.Deciphering key features in protein structures with the new ENDscript server[J].Nucleic Acids Res,2014,42(W1):W320-324.DOI:10.1093/nar/gku316.
[14] Porter L,RadulovićŽ,Kim T,et al.Bioinformatic analyses of male and female Amblyomma americanum tick expressed serine protease inhibitors (serpins)[J].Ticks Tick Borne Dis,2015,6(1):16-30.DOI:10.1016/j.ttbdis.2014.08.002.
[15] Jumper J,Evans R,Pritzel A,et al.Highly accurate protein structure prediction with AlphaFold[J].Nature,2021,596(7873):583-589.DOI:10.1038/s41586-021-03819-2.
[16] Páll S,Zhmurov A,Bauer P,et al.Heterogeneous parallelization and acceleration of molecular dynamics simulations in GROMACS[J].J Chem Phys,2020,153(13):134110.DOI:10.1063/5.0018516.
[17] Bernetti M,Bertazzo M,Masetti M.Data-driven molecular dynamics:A multifaceted challenge[J].Pharmaceuticals (Basel),2020,13(9):253-279.DOI:10.3390/ph13090253.
[18] Anandakrishnan R,Aguilar B,Onufriev AV.H++3.0:Automating pK prediction and the preparation of biomolecular structures for atomistic molecular modeling and simulations[J].Nucleic Acids Res,2012,40(W1):W537-541.DOI:10.1093/nar/gks375.
[19] Lindorff-Larsen K,Piana S,Palmo K,et al.Improved side-chain torsion potentials for the Amber ff99SB protein force field[J].Proteins,2010,78(8):1950-1958.DOI:10.1002/prot.22711.
[20] Williams CJ,Headd JJ,Moriarty NW,et al.MolProbity:More and better reference data for improved all-atom structure validation[J].Protein Sci,2018,27(1):293-315.DOI:10.1002/pro.3330.
[21] Colovos C,Yeates TO.Verification of protein structures:Patterns of nonbonded atomic interactions[J].Protein Sci,1993,2(9):1511-1519.DOI:10.1002/pro.5560020916.
[22] Melo F,Feytmans E.Assessing protein structures with a non-local atomic interaction energy[J].J Mol Biol,1998,277(5):1141-1152.DOI:10.1006/jmbi.1998.1665.
[23] Zhang GG,Jia HX,Luo L,et al.Molecular and functional characterization of a novel Kunitz-type toxin-like peptide in the giant triton snail Charonia tritonis[J].Mar Drugs,2022,20(11):686.DOI:10.3390/md20110686.
[24] CarrióMM,Cubarsi R,Villaverde A.Fine architecture of bacterial inclusion bodies[J].FEBS Lett,2000,471(1):7-11.DOI:10.1016/s0014-5793(00) 01357-0.
[25] Restrepo-Pineda S,Bando-Campos CG,Valdez-Cruz NA,et al.Recombinant production of ESAT-6 antigen in thermoinducible Escherichia coli:The role of culture scale and temperature on metabolic response,expression of chaperones,and architecture of inclusion bodies[J].Cell Stress Chaperones,2019,24(4):777-792.DOI:10.1007/s12192-019-01006-x.
[26] Guo XY,Wang RX,Ma RF,et al.Facile purification of active recombinant mouse cytosolic carboxypeptidase 6 from Escherichia coli[J].Protein Expr Purif,2022,197:106112.DOI:10.1016/j.pep.2022.106112.
[27] LipničanováS,ChmelováD,Godány A,et al.Purification of viral neuraminidase from inclusion bodies produced by recombinant Escherichia coli[J].J Biotechnol,2020,316:27-34.DOI:10.1016/j.jbiotec.2020.04.005.
[28] Varadi M,Anyango S,Deshpande M,et al.AlphaFold protein structure database:Massively expanding the structural coverage of protein-sequence space with high-accuracy models[J].Nucleic Acids Res,2022,50(D1):D439-D444.DOI:10.1093/nar/gkab1061.
[29] Soares TS,Watanabe RMO,Tanaka-Azevedo AM,et al.Expression and functional characterization of boophilin,a thrombin inhibitor from Rhipicephalus(Boophilus) microplus midgut[J].Vet Parasitol,2012,187(3/4):521-528.DOI:10.1016/j.vetpar.2012.01.027.
[30] Macedo-Ribeiro S,Almeida C,Calisto BM,et al.Isolation,cloning and structural characterisation of boophilin,a multifunctional Kunitz-type proteinase inhibitor from the cattle tick[J].PLoS One,2008,3(2):e1624.DOI:10.1371/journal.pone.0001624.
[31] Farmer J,Kanwal F,Nikulsin N,et al.Statistical measures to quantify similarity between molecular dynamics simulation trajectories[J].Entropy (Basel),2017,19(12):646.DOI:10.3390/e19120646.
Outlines

/