收稿日期: 2022-12-12
网络出版日期: 2023-08-17
基金资助
山东省自然科学基金(ZR2020MC048);山东省自然科学基金(ZR2020KH001)
Research progress on regulatory mechanism of mosquito vectors promoting virus infection
Received date: 2022-12-12
Online published: 2023-08-17
Supported by
Natural Science Foundation of Shandong Province of China(ZR2020MC048);Natural Science Foundation of Shandong Province of China(ZR2020KH001)
娄紫微, 刘宏美, 程鹏 . 媒介蚊虫促进病毒感染调控的机制研究进展[J]. 中国媒介生物学及控制杂志, 2023 , 34(4) : 585 -588 . DOI: 10.11853/j.issn.1003.8280.2023.04.026
Mosquito-borne viruses are a serious, global, and widespread threat to public health with the risk of infecting hosts, which cause the increasing incidence and spreading of mosquito-borne infectious diseases in human society, such as dengue fever and Zika virus disease. To adapt to the different host environments of humans and mosquitoes, the viruses have evolved various complex interaction mechanisms to achieve their survival, reproduction, and transmission. This paper reviews recent research on the regulatory mechanisms of mosquitoes promoting viral infection.
| 1 | Huang YJS, Higgs S, Vanlandingham DL. Emergence and re-emergence of mosquito-borne arboviruses[J]. Curr Opin Virol, 2019, 34, 104-109. |
| 2 | Weaver SC, Barrett AD. Transmission cycles, host range, evolution and emergence of arboviral disease[J]. Nat Rev Microbiol, 2004, 2 (10):789-801. |
| 3 | Cheng G, Liu Y, Wang PH, et al. Mosquito defense strategies against viral infection[J]. Trends Parasitol, 2016, 32 (3):177-186. |
| 4 | Bhatt S, Gething PW, Brady OJ, et al. The global distribution and burden of dengue[J]. Nature, 2013, 496 (7446):504-507. |
| 5 | Romo H, Papa A, Kading R, et al. Comparative vector competence of north American Culex pipiens and Cx. quinquefasciatus for African and European lineage 2 West Nile viruses[J]. Am J Trop Med Hyg, 2018, 98 (6):1863-1869. |
| 6 | Huang ZJ, Kingsolver MB, Avadhanula V, et al. An antiviral role for antimicrobial peptides during the arthropod response to Alphavirus replication[J]. J Virol, 2013, 87 (8):4272-4280. |
| 7 | Turtle L, Solomon T. Japanese encephalitis: The prospects for new treatments[J]. Nat Rev Neurol, 2018, 14 (5):298-313. |
| 8 | Lee WS, Webster JA, Madzokere ET, et al. Mosquito antiviral defense mechanisms: A delicate balance between innate immunity and persistent viral infection[J]. Parasit Vectors, 2019, 12 (1):165. |
| 9 | Zhao LM, Alto BW, Smartt CT, et al. Transcription profiling for defensins of Aedes aegypti (Diptera: Culicidae) during development and in response to infection with Chikungunya and Zika viruses[J]. J Med Entomol, 2018, 55 (1):78-89. |
| 10 | Liu K, Xiao CG, Xi SM, et al. Mosquito defensins enhance Japanese encephalitis virus infection by facilitating virus adsorption and entry within the mosquito[J]. J Virol, 2020, 94 (21):e01164-20. |
| 11 | Liu K, Hou FX, Wahaab A, et al. Mosquito defensin facilitates Japanese encephalitis virus infection by downregulating the C6/36 cell-surface antiviral protein HSC70B[J]. Vet Microbiol, 2021, 253, 108971. |
| 12 | Zininga T, Ramatsui L, Shonhai A. Heat shock proteins as immunomodulants[J]. Molecules, 2018, 23 (11):2846. |
| 13 | Pujhari S, Brustolin M, Macias VM, et al. Heat shock protein 70 (HSP70) mediates Zika virus entry, replication, and egress from host cells[J]. Emerg Microbes Infect, 2019, 8 (1):8-16. |
| 14 | Ren JP, Ding TB, Zhang W, et al. Does Japanese encephalitis virus share the same cellular receptor with other mosquito-borne flaviviruses on the C6/36 mosquito cells?[J]. Virol J, 2007, 4, 83. |
| 15 | Chuang CK, Yang TH, Chen TH, et al. Heat shock cognate protein 70 isoform D is required for clathrin-dependent endocytosis of Japanese encephalitis virus in C6/36 cells[J]. J Gen Virol, 2015, 96 (Pt 4):793-803. |
| 16 | Ghosh A, Desai A, Ravi V, et al. Chikungunya virus interacts with heat shock cognate 70 protein to facilitate its entry into mosquito cell line[J]. Intervirology, 2018, 60 (6):247-262. |
| 17 | Paingankar MS, Gokhale MD, Deobagkar DN. Dengue-2-virus-interacting polypeptides involved in mosquito cell infection[J]. Arch Virol, 2010, 155 (9):1453-1461. |
| 18 | Lubkowska A, Pluta W, Strońska A, et al. Role of heat shock proteins (HSP70 and HSP90) in viral infection[J]. Int J Mol Sci, 2021, 22 (17):9366. |
| 19 | 毕英杰, 谢晶莹. 热休克蛋白90在抗病毒免疫中作用的研究进展[J]. 中国生物制品学杂志, 2019, 32 (12):1428-1432. |
| 19 | Bi YJ, Xie JY. Progress in research on role of heat shock protein 90 in antiviral immunity[J]. Chin J Biologicals, 2019, 32 (12):1428-1432. |
| 20 | Shang Q, Wu P, Huang HL, et al. Inhibition of heat shock protein 90 suppresses Bombyx mori nucleopolyhedrovirus replication in B. mori[J]. Insect Mol Biol, 2020, 29 (2):205-213. |
| 21 | 程功, 吴葩, Peng S, 等. 蚊肠道共生菌增强伊蚊对蚊媒病毒易感性[J]. 科学新闻, 2020, (2):74. |
| 21 | Cheng G, Wu P, Peng S, et al. A gut commensal bacterium promotes mosquito permissiveness to arboviruses[J]. Sci News, 2020, (2):74. |
| 22 | Dennison NJ, Jupatanakul N, Dimopoulos G. The mosquito microbiota influences vector competence for human pathogens[J]. Curr Opin Insect Sci, 2014, 3, 6-13. |
| 23 | Angleró-Rodríguez YI, Talyuli OAC, Blumberg BJ, et al. An Aedes aegypti-associated fungus increases susceptibility to dengue virus by modulating gut trypsin activity[J]. eLife, 2017, 6, e28844. |
| 24 | Wu P, Sun P, Nie KX, et al. A gut commensal bacterium promotes mosquito permissiveness to arboviruses[J]. Cell Host Microbe, 2019, 25 (1):101-112.e5. |
| 25 | Caragata EP, Tikhe CV, Dimopoulos G. Curious entanglements: Interactions between mosquitoes, their microbiota, and arboviruses[J]. Curr Opin Virol, 2019, 37, 26-36. |
| 26 | Liu K, Qian YJ, Jung YS, et al. mosGCTL-7, a C-type lectin protein, mediates Japanese encephalitis virus infection in mosquitoes[J]. J Virol, 2017, 91 (10):e01348-16. |
| 27 | Liu Y, Zhang FC, Liu JY, et al. Transmission-blocking antibodies against mosquito C-type lectins for dengue prevention[J]. PLoS Pathog, 2014, 10 (2):e1003931. |
| 28 | 吴宇杰, 刘珊, 张溪, 等. 伊蚊C型凝集素mosGCTL-2是登革病毒感染相关的重要蛋白质(英文)[J]. 生物化学与生物物理进展, 2019, 46 (12):1187-1195. |
| 28 | Wu YJ, Liu S, Zhang X, et al. C-type lectin protein mosGCTL-2 from Aedes aegypti is a novel factor for dengue virus infection[J]. Prog Biochem Biophys, 2019, 46 (12):1187-1195. |
| 29 | Krishnan MN, Ng A, Sukumaran B, et al. RNA interference screen for human genes associated with West Nile virus infection[J]. Nature, 2008, 455 (7210):242-245. |
| 30 | 刘博宇, 李盼, 杨桂连. C型凝集素受体在寄生虫感染免疫调节中的作用[J]. 中国寄生虫学与寄生虫病杂志, 2015, 33 (3):228-232. |
| 30 | Liu BY, Li P, Yang GL. The immunomodulatory role of C-type lectin receptors in parasitic infection[J]. Chin J Parasitol Parasit Dis, 2015, 33 (3):228-232. |
| 31 | Su JX, Wang G, Li CX, et al. Screening for differentially expressed miRNAs in Aedes albopictus (Diptera: Culicidae) exposed to DENV-2 and their effect on replication of DENV-2 in C6/36 cells[J]. Parasit Vectors, 2019, 12 (1):44. |
| 32 | Trobaugh DW, Klimstra WB. MicroRNA regulation of RNA virus replication and pathogenesis[J]. Trends Mol Med, 2017, 23 (1):80-93. |
| 33 | Cai WJ, Pan YH, Cheng AC, et al. Regulatory role of host microRNAs in flaviviruses infection[J]. Front Microbiol, 2022, 13, 869441. |
| 34 | Zhou YH, Liu YX, Yan H, et al. miR-281, an abundant midgut-specific miRNA of the vector mosquito Aedes albopictus enhances dengue virus replication[J]. Parasit Vectors, 2014, 7, 488. |
| 35 | Su JX, Li CX, Zhang YM, et al. Identification of microRNAs expressed in the midgut of Aedes albopictus during dengue infection[J]. Parasit Vectors, 2017, 10 (1):63. |
| 36 | Avila-Bonilla RG, Yocupicio-Monroy M, Marchat LA, et al. miR-927 has pro-viral effects during acute and persistent infection with dengue virus type 2 in C6/36 mosquito cells[J]. J Gen Virol, 2020, 101 (8):825-839. |
| 37 | Avila-Bonilla RG, Yocupicio-Monroy M, Marchat LA, et al. Analysis of the miRNA profile in C6/36 cells persistently infected with dengue virus type 2[J]. Virus Res, 2017, 232, 139-151. |
| 38 | Dubey SK, Shrinet J, Sunil S. Aedes aegypti microRNA, miR-2944b-5p interacts with 3'UTR of Chikungunya virus and cellular target vps-13 to regulate viral replication[J]. PLoS Negl Trop Dis, 2019, 13 (6):e0007429. |
| 39 | Maharaj PD, Widen SG, Huang J, et al. Discovery of mosquito saliva microRNAs during CHIKV infection[J]. PLoS Negl Trop Dis, 2015, 9 (1):e0003386. |
| 40 | Xu TL, Sun YW, Feng XY, et al. Development of miRNA-based approaches to explore the interruption of mosquito-borne disease transmission[J]. Front Cell Infect Microbiol, 2021, 11, 665444. |
| 41 | Sun P, Nie KX, Zhu YB, et al. A mosquito salivary protein promotes flavivirus transmission by activation of autophagy[J]. Nat Commun, 2020, 11 (1):260. |
| 42 | 王朝阳, 陈小芳, 程功. 媒介蚊虫唾液蛋白调控蚊媒病毒传播的研究进展[J]. 中国媒介生物学及控制杂志, 2021, 32 (6):653-659. |
| 42 | Wang CY, Chen XF, Cheng G. Research progress on the regulation of mosquito-borne virus transmission by mosquito salivary proteins[J]. Chin J Vector Biol Control, 2021, 32 (6):653-659. |
| 43 | Valenzuela-Leon PC, Shrivastava G, Martin-Martin I, et al. Multiple salivary proteins from Aedes aegypti mosquito bind to the Zika virus envelope protein[J]. Viruses, 2022, 14 (2):221. |
| 44 | Wichit S, Diop F, Hamel R, et al. Aedes aegypti saliva enhances Chikungunya virus replication in human skin fibroblasts via inhibition of the type Ⅰ interferon signaling pathway[J]. Infect Genet Evol, 2017, 55, 68-70. |
| 45 | Sri-In C, Weng SC, Chen WY, et al. A salivary protein of Aedes aegypti promotes dengue-2 virus replication and transmission[J]. Insect Biochem Mol Biol, 2019, 111, 103181. |
| 46 | Lefteri DA, Bryden SR, Pingen M, et al. Mosquito saliva enhances virus infection through sialokinin-dependent vascular leakage[J]. Proc Natl Acad Sci USA, 2022, 119 (24):e2114309119. |
| 47 | Hastings AK, Uraki R, Gaitsch H, et al. Aedes aegypti NeSt1 protein enhances Zika virus pathogenesis by activating neutrophils[J]. J Virol, 2019, 93 (13):e00395-19. |
| 48 | Liu Y, Liu JY, Du SY, et al. Evolutionary enhancement of Zika virus infectivity in Aedes aegypti mosquitoes[J]. Nature, 2017, 545 (7655):482-486. |
| 49 | Ramirez RR, Ludert JE. The dengue virus nonstructural protein 1 (NS1) is secreted from mosquito cells in association with the intracellular cholesterol transporter chaperone caveolin complex[J]. J Virol, 2019, 93 (4):e01985-18. |
| 50 | Brackney DE. Implications of autophagy on arbovirus infection of mosquitoes[J]. Curr Opin Insect Sci, 2017, 22, 1-6. |
| 51 | Weng SC, Tsao PN, Shiao SH. Blood glucose promotes dengue virus infection in the mosquito Aedes aegypti[J]. Parasit Vectors, 2021, 14 (1):376. |
| 52 | Melendez-Villanueva MA, Trejo-ávila LM, Galán-Huerta KA, et al. Lipids fluctuations in mosquitoes upon arboviral infections[J]. J Vector Borne Dis, 2021, 58 (1):12-17. |
| 53 | Chotiwan N, Andre BG, Sanchez-Vargas I, et al. Dynamic remodeling of lipids coincides with Dengue virus replication in the midgut of Aedes aegypti mosquitoes[J]. PLoS Pathog, 2018, 14 (2):e1006853. |
/
| 〈 |
|
〉 |