论著

基于随机森林的鼠类头骨自动识别系统开发

展开
  • 1 中国农业大学农学与生物技术学院,北京 100193;
    2 太原市科技应用推广站;
    3 广西防城港出入境检验检疫局;
    4 山西省农业科学院植物保护研究所
花慧贞,女,在读硕士,从事啮齿动物自动分类研究,Email: huahuizheng1987@163.com

收稿日期: 2014-05-12

  网络出版日期: 2014-10-20

基金资助

公益性行业(农业)科研专项经费项目(201303107,200903004); 山西省国际合作项目(2012081001-6); 山西省科技攻关项目(20110311026)

Development of rat skull automatic identification system basedon random forests

Expand
  • 1 College of Agriculture and Biotechnology of China Agriculture University, Beijing 100193, China;
    2 Taiyuan ExtensionStation of Application Technology;
    3 Entry-Exit Inspection and Quarantine Bureau of Guangxi Fangcheng Por;
    4 Institute of Plant Protection, Shanxi Academy of Agriculture Science

Received date: 2014-05-12

  Online published: 2014-10-20

Supported by

Supported by the Grants from Nonprofit (Agriculture) Special Funds for Scientific Research Projects (No. 201303107, 200903004), Shanxi International Cooperation Project (No. 2012081001-6) and Shanxi Science and Technology Key Project (No. 20110311026)

摘要

目的 以实现鼠类头骨自动鉴定为目的,设计并开发了基于随机森林的鼠类自动识别系统。方法 系统应用计算机图像识别技术,使用计算机视觉库OpenCV和随机森林算法,设计鼠类头骨识别的训练和识别程序,训练模块包括图像输入、图像预处理、特征提取、训练分类器和分类器数据储存5个部分,识别模块的流程又包括图像输入、图像预处理、特征提取、模式识别和返回识别结果5个部分。通过自动提取鼠类头骨上颌正面图像的32个数学形态学特征(如偏心率、叶状性等),对啮齿目4科13种鼠进行自动识别。结果 实际运行结果显示,系统的平均识别率>80%,且每鼠种的识别正确率均在70%以上,说明该系统操作性强,鉴定结果比较可靠。结论 借助计算机技术可以实现鼠类的自动识别,但目前该系统还处于研究的初步阶段,如何进一步提高识别率尚需更多的研究。

本文引用格式

花慧贞, 杨慧勇, 袁雄峰, 邹波, 王登, 高灵旺 . 基于随机森林的鼠类头骨自动识别系统开发[J]. 中国媒介生物学及控制杂志, 2014 , 25(5) : 416 -420 . DOI: 10.11853/j.issn.1003.4692.2014.05.008

Abstract

Objective Rodents can survive in any existing habitat, and are the largest order of mammals in terms of both variety and quantity of species. Unlike other mammals, their classification can be variable and complex, due to the large number of species. Furthermore, the inter-species characteristics and traits tend to be convergent. They pose a seriously increasing threat to agriculture. Hence it is crucial to find effective measures to manage and control rodent infestation, which requires confirmation of their taxonomic statuses precisely and quickly. However, an expert on one species or family may be unfamiliar with another. These issues have increased the demand for digitized software tools that can recognize and characterize rodent skulls from images. In this study we developed a system, named “Rodents Skull Automatic Identification System”, based on random forests. Methods The training module and recognition module of the system were designed based on the recognition technology of computer science, OpenCV, and random forests. The training module included image input, image preprocessing, feature extraction, pattern recognition, and identification result return. The recognition module included image input, image preprocessing, feature extraction, training classifier, and classifier data storage. The system identified rodents of 13 species from 4 families through automatic extraction and analysis of 32 mathematical morphological features on dorsal maxillary images, such as eccentricity and compactness. Results The system could identify 13 species among 4 families of rodents. The results showed that the average identification accuracy rate was above 80%, and the identification accuracy rate of each species was above 70%, indicating that the system was highly reliable in recognition of rodents. Conclusion Rodents can be automatically identified with the aid of computer technology. However, this system is only a preliminary study, and it requires further studies to improve the recognition rate.

参考文献

[1] 潘清华,王应祥,岩崐. 中国哺乳动物彩色图鉴[M]. 北京:中国林业出版社,2007:386-394.
[2] Andrew TS, 解焱. 中国兽类野外手册[M]. 长沙:湖南教育出版社,2009:31-186.
[3] 郑智民,姜志宽,陈国安. 啮齿动物学[M]. 上海:上海交通大学出版社,2008:8-11.
[4] 吴攀文,王伟伟,周材权,等. 基于毛髓质指数探讨甘肃鼢鼠、高原鼢鼠、秦岭鼢鼠的分类地位[J]. 动物分类学报,2007,32(3):502-504.
[5] Tofilski A. Draw wing, a program for numerical description of insect wings[J]. Insect Sci,2004,17(4):1-5.
[6] Weeks PJD, Neill MAO, Gaston KJ, et al. Automating insect identification: exploring the limitations of a prototype system[J]. Appl Entomol,1999,123(1):1-8.
[7] Gilchrist AS, Crisafulli DCA. Using variation in wing shape to distinguish between wild and mass?reared individuals of Queensland fruit fly, bactrocera tryoni[J]. Neth Entomol Soc,2006,119(2):175-178.
[8] 于新文,沈佐锐,高灵旺,等. 昆虫图像几何形状特征的提取技术研究[J]. 中国农业大学学报,2003,8(3):47-50.
[9] 赵汗青,沈佐锐,于新文. 数学形态特征应用于昆虫自动鉴别的研究[J]. 中国农业大学学报,2002,7(3):38-42.
[10] 赵汗青,沈佐锐,于新文. 数学形态学在昆虫分类学上的应用研究 Ⅰ. 在目级阶元上的应用研究[J]. 昆虫学报,2003,46(1):45-50.
[11] 赵汗青,沈佐锐,于新文. 数学形态学在昆虫分类学上的应用研究 Ⅱ. 在总科阶元上的应用研究[J]. 昆虫学报,2003,46(2):201-208.
[12] 黄小燕,郭勇,赵太飞. 数学形态学的储粮害虫彩色数字图像分割[J]. 计算机测量与控制,2003,11(6):467-469.
[13] Breiman L. Random forests[J]. Machine Learn,2001,45(1):5-32.
[14] 刘艳丽. 随机森林综述[D]. 天津:南开大学,2008.
文章导航

/